Somethings About Biological Prostheses

Main Article Content

Prof. Dr. Raffaella Aversa
Prof. Dr. Eng. Relly Victoria V. Petrescu
Dr. Valeria Perrotta
Dr. Eng. Liviu Marian Ungureanu
Prof. Dr. Doc. St. Antonio Apicella
Florian Ion Tiberiu Petrescu
صندلی اداری

Abstract

Finite element models of the female biofidel were developed using a specific combination of segmentation with computed tomography and solid modeling tools capable of representing bone physiology and structural behavior. This biofidel finite element (FEM) model is used to evaluate the change in the physiological distribution of stress in the femoral prosthesis and to evaluate the new design criteria for biopsy. Biomimetics, biomechanics, and tissue engineering are three multidisciplinary fields that have been considered in this research to achieve the goal of improving the reliability of prosthetic implants. The authors took these studies to gather the untapped potential of such advanced materials and design technologies by developing finite models of Biofidel elements capable of correctly mimicking the biomechanical behavior of the femur. The new remodeling of the tetrahedral elements was performed in 3Matic looking for the congruence of the node at the bone-implant interfaces, where the material was defined for the new configuration of the finite elements. The evaluation of the mechanical properties was made taking into account the mechanical characteristics of the cortical and trabecular bone. For biomechanical integration of the implant, a custom material with an improved combination of strength and rigidity that matches the bone should be used. This greater biomechanical compatibility will avoid weakening the implant and increase lifespan, avoiding additional surgery for revision and allowing good biological integration (bone growth). Innovative biomimetic materials for tissue engineering based on hydrophilic polymers were developed by our research group and presented attractive physical, biological, and mechanical properties for biomedical applications. For use with metal prostheses, the authors have developed a hybrid biocompatible material, extremely biocompatible, based on hydrophilic chemicals and hydroxy-ethyl-methacrylate type. The structural metal composition of the new prostheses will be made of titanium alloys using additive technology based on melting thin layers of titanium powder (about 50 microns) on each other until the desired component is obtained (sandwich method). Then, the biomaterial and osteoconductive nanostructured material developed in our previous studies can cover the titanium structural prosthetic skeleton. These hybrid biological prostheses, which are made using synthetic materials capable of inducing the growth of biological networks and structural steel scaffolding, may favor the emergence of new classes of orthopedic hybrids in the medical field. The new hybrid bio-prosthesis could drastically reduce protection against stress while providing an advantageous improvement in the life of the prosthesis compared to traditional solutions. Recovering optimal joint functionality will improve the patient's quality of life, which perceives a significant reduction in the risk of the new surgery. The requirement to predict potential structural changes that could be induced by improper use of biologically compatible prostheses in bone structure and morphology has forced our studies to evaluate fictitious models that could be considered for efficient bone distribution and orthotropic behavior.

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biographies

Prof. Dr. Raffaella Aversa , Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy,Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Prof. Dr. Eng. Relly Victoria V. Petrescu, Bucharest Polytechnic University, Romania

Bucharest Polytechnic University, Romania

Dr. Valeria Perrotta , Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy,Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Dr. Eng. Liviu Marian Ungureanu, Bucharest Polytechnic University, Romania

Bucharest Polytechnic University, Romania

Prof. Dr. Doc. St. Antonio Apicella , Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Florian Ion Tiberiu Petrescu, IFToMM

Ph.D. Eng. Florian Ion T. PETRESCU

Senior Lecturer at UPB (Bucharest Polytechnic University), Theory of Mechanisms and Robots department,

Date of birth: March.28.1958; Higher education: Polytechnic University of Bucharest, Faculty of Transport, Road Vehicles Department, graduated in 1982, with overall average 9.63;

Doctoral Thesis: "Theoretical and Applied Contributions About the Dynamic of Planar Mechanisms with Superior Joints".

Expert in: Industrial Design, Mechanical Design, Engines Design, Mechanical Transmissions, Dynamics, Vibrations, Mechanisms, Machines, Robots.

Association:

Member ARoTMM, IFToMM, SIAR, FISITA, SRR, AGIR. Member of Board of SRRB (Romanian Society of Robotics).

References

Abdul-Razzak, K., Alzoubi, K., Abdo, S., & Hananeh, W. (2012). High-dose vitamin C: Does it exacerbate the effect of psychosocial stress on liver? Biochemical and histological study, Experimental and Toxicologic Pathology, 64(4), 367-371

Annunziata, M., Aversa, R., Apicella, A., Annunziata, A., Apicella, D., Buonaiuto, C., & Guida, L. (2006). In vitro biological response to a light-cured composite when used for cementation of composite inlays, Dental Materials, 22(12), 1081-1085. DOI: 10.1016/J.DENTAL.2005.08.009

Annunziata, M., Guida, L., Perillo, L., Aversa, R., & Passaro, I. (2008). Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J. Mater. Sci. Mater. Med., 19, 3585-3591. DOI: 10.1007/s10856-008-3514-2.

Apicella D., Aversa, R., Ferro E., Ianniello D, & Apicella, A, (2010). The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 93(1), 150-163. DOI: 10.1002/jbm.b.31569

Apicella, D., Veltri, M., Balleri, P., Apicella, A., & Ferrari, M. (2011). Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation, Clinical Oral Implants Research, 22(2), 182-188. DOI: 10.1111/j.1600-0501.2010.01979.x

Apicella, D., Aversa, R., Tatullo, M., Simeone, M., Sayed, S., Marrelli, M., & Apicella, A. (2015). Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements, Dental Materials, 31(12), e289-e305. DOI: 10.1016/j.dental.2015.09.016

Ashman, R. B., & Rho, J. Y., (1988). Elastic modulus of trabecular bone material. J. Biomechanics, 21, 177-81. doi:10.1016/0021-9290(88)90167-4

Ashman, R. B., Cowin, S. C., Van Buskirk, W. C., & Rice, J. C., (1984). A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomechanics. 17(5), 349-361. DOI:10.1016/0021-9290(84)90029-0

Aversa, R., Apicella, D., Perillo, L., Sorrentino, R., Zarone, F., Ferrari, F., & Apicella, A. (2009). Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental materials, 25, 678–690: DOI: 10.1016/j.dental.2008.10.015

Aversa, R., Petrescu, F. I. T., Petrescu, R. V. & Apicella, A. (2016ª). Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13, 1060-1067. DOI: 10.3844/ajassp.2016.1060.1067

Aversa, R., Parcesepe, D., Petrescu, R. V., Chen, G., Petrescu, F. I. T., Tamburrino, F., & Apicella, A. (2016b). Glassy Amorphous Metal Injection Molded Induced Morphological Defects, Am. J. Applied Sci. 13(12), 1476-1482.

Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016c). Smart-Factory: Optimization and Process Control of Composite Centrifuged Pipes, Am. J. Applied Sci. 13(11), 1330-1341.

Aversa, R., Tamburrino, F., Petrescu, R. V., Petrescu, F. I. T., Artur, M., Chen, G., & Apicella, A. (2016d). Biomechanically Inspired Shape Memory Effect Machines Driven by Muscle like Acting NiTi Alloys, Am. J. Applied Sci. 13(11), 1264-1271.

Aversa, R., Buzea, E. M., Petrescu, R. V., Apicella, A., Neacsa, M., & Petrescu, F. I. T. (2016e). Present a Mechatronic System Having Able to Determine the Concentration of Carotenoids, Am. J. of Eng. and Applied Sci. 9(4), 1106-1111.

Aversa, R., Petrescu, R. V., Sorrentino, R., Petrescu, F. I. T., & Apicella, A. (2016f). Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation, Am. J. of Eng. and Applied Sci. 9(4), 1096-1105.

Aversa, R., Perrotta, V., Petrescu, R. V., Misiano, C., Petrescu, F. I. T., & Apicella, A. (2016g). From Structural Colors to Super-Hydrophobicity and Achromatic Transparent Protective Coatings: Ion Plating Plasma Assisted TiO2 and SiO2 Nano-Film Deposition, Am. J. of Eng. and Applied Sci. 9(4), 1037-1045.

Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016h). Biomimetic and Evolutionary Design Driven Innovation in Sustainable Products Development, Am. J. of Eng. and Applied Sci. 9(4), 1027-1036.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016i). Mitochondria are Naturally Micro Robots - A review, Am. J. of Eng. and Applied Sci. 9(4), 991-1002.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016j). We are Addicted to Vitamins C and E-A Review, Am. J. of Eng. and Applied Sci. 9(4), 1003-1018.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016k). Physiologic Human Fluids and Swelling Behavior of Hydrophilic Biocompatible Hybrid Ceramo-Polymeric Materials, Am. J. of Eng. and Applied Sci. 9(4), 962-972.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016l). One Can Slow Down the Aging through Antioxidants, Am. J. of Eng. and Applied Sci. 9(4), 1112-1126.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016m). About Homeopathy or ≪Similia Similibus Curentur≫, Am. J. of Eng. and Applied Sci. 9(4), 1164-1172.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016n). The Basic Elements of Life's, Am. J. of Eng. and Applied Sci. 9(4), 1189-1197.

Aversa, R., Petrescu, F. I. T., Petrescu, R. V., & Apicella, A. (2016º). Flexible Stem Trabecular Prostheses, Am. J. of Eng. and Applied Sci. 9(4), 1213-1221.

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2017). Modern Transportation and Photovoltaic Energy for Urban Ecotourism. Transylvanian Review of Administrative Sciences Special Issue, 5-20. DOI: 10.24193/tras.SI2017.1

Beaupre G. S., & Hayes, W. C. (1985). Finite Element Analysis of a three dimensional open-celled model for trabecular bone. J. Biomech. Eng. 107, 249-56, PMID: 4046566

Bonfield, W., Grynpas, M. D., Tully A. E., Bowman, J., & Abram, J. (1981). Hydroxyapatite reinforced polyethylene — a mechanically compatible implant material for bone replacement. Biomaterials, 2: 185-186. DOI: 10.1016/0142-9612(81)90050-8

Burnstein A., Reilly D. T., & Martens M., (1976). Aging of bone tissue: Mechanical properties., J. of Bone and joint Surgery, 58, 82-86, https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties

Carter D. R., & Hayes W. C. (1977). The compressive behavior of bone as a two phase porous structure. J. of Bone and joint Surgery, 59A. 954, PMID: 561786

Comerun, H. U. (1986). Six-year results with a microporous-coated metal hip prosthesis, Clin. Orthop. 208 81

Čepelak I., Slavica Dodig, & Ognjen Čulić (2013). Magnesium-more than a common cation. Med. Sci., 39, 47-68.

Chen, Q., Zhu, C., & Thouas, G. A. (2012). Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites. Progress. Biomater., 1, 1-22. DOI: 10.1186/2194-0517-1-2

Comerun, H. U. (1986) Six-year results with a microporous-coated metal hip prosthesis, Clin. Orthop. 208 81

Cormack, A. N., & Tilocca, A. (2012). Structure and biological activity of glasses and ceramics. Philos. Trans. Math. Phys. Eng. Sci., 370, 1271-1280. DOI: 10.1098/rsta.2011.0371

Dalstyra, M., Huiskes, R., Odgaard, A., & Van Erning, L. (1993). Mechanical and textural properties of Pelvic Trabecular Bone. J. Biomechanics. 26(4-5), 349-361, DOI: 10.1016/0021-9290(93)90014-6

Davis, P. A., Huang, S. J., Nicolais, L., & Ambrosio, L. (1991). Modified PHEMA Hydrogels. In: Szycher M, editor. High performance biomaterials. Lancaster, PA, USA: Technonic. 343–68.

Prashantha, K., Vasanth, K. P. K., Sherigara, B. S., & Prasannakumar, S. (2001). Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly-(2-hydroxyethylmethacrylate), synthesis, chemical, mechanical and thermal properties, bull. Mater Sci., 2001; 24(5), 535–8.

Filmon, R., Grizon, F., Baslie, M. F., & Chappard, D. (2002). Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethylmethacrylate). Biomaterials, 23, 3053–9.

Frost, H. M. (1964). Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas. 22–25.

Frost, H. M. (1990). Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec, 226, 414–22.

Frost, H. M. (2003). update of bone physiology and Wolff’s law for clinicians. Angle Orthod, 74, 3–15.

Frost, H. M. (1994). Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod, 64, 175–88.

Gramanzini, M., Gargiulo, S., Zarone, F., Megna, R., Apicella, A., Aversa, R., Salvatore, M., Mancini, M., Sorrentino, R., & Brunetti, A. (2016). Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: A pilot study in minipig model. Dental Materials, 32(6), 794-806. DOI: 10.1016/j.dental.2016.03.025

Gorustovich, A. A., Roether, J. A., & Boccaccini, A. R. (2010). Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Eng. Part B Rev., 16, 199-207. DOI: 10.1089/ten.TEB.2009.0416

Halpin, J. C., & Kardos J. L. (1976). Halpin-Tsai equations: A review, Polymer Engineering and Science, 16(5), 344-352

Heinemann, S., Heinemann, C., Wenisch, S., Alt, V., & Worch, H. (2013). Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomaterialia, 9, 4878-4888. DOI: 10.1016/j.actbio.2012.10.010

Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295, 1014-1017. DOI: 10.1126/science.1067404

Hench, L. L., & Thompson, I. (2010). Twenty-first century challenges for biomaterials. J. Royal Society Interface, 7, S379-S391. DOI: 10.1098/rsif.2010.0151.focus

Hench, L. L., & Wilson, J. (1993). An introduction to bioceramics. World Sci., 1, 396-396. DOI: 10.1142/2028

Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32, 2757-2774. DOI: 10.1016/j.biomaterials.2011.01.004

Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudula, B., & Slooff, T. J. (1987). Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech, 20, 1135–1150.

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543. DOI: 10.1016/S0142-9612(00)00121-6

Jones, J. R., & Clare, A. G. (2012). Bio-Glasses. An Introduction. 1st Edn., Wiley, Chichester, ISBN-10: 1118346475, 320.

Julien, M., Magne, D., Masson, M., Rolli-Derkinderen, M., & Chassande, O. (2007). Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology, 148, 530-537. DOI: 10.1210/en.2006-0763

Kabra, B., Gehrke, S. H., Hwang, S. T., & Ritschel, W. (1991). Modification of the dynamic swelling behaviour of pHEMA. J Appl Polym Sci, 42, 2409–16.

Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491. DOI: 10.1016/j.biomaterials.2005.02.002

Kim, H. W., Knowles, J. C., & Kim, H. E. (2004). Development of hydroxyapatite bone scaffold for controlled drug release via poly(ϵ-caprolactone) and hydroxyapatite hybrid coatings. J. Biomed. Mater. Res. Part B: Applied Biomater., 70, 240-249. DOI: 10.1002/jbm.b.30038

Kumar, A., Rathi, A., Singh, J., & Sharma, N. K. (2016). Studies on Titanium Hip Joint Implants using Finite Element Simulation. In Proceedings of the World Congress on Engineering (Vol. 2).

Kummer, B. (1986). Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory, Zeitschrift fur Orthopadie und Ihre Grenzgebiete, Volume 124(2), 179-187.

Mano, J. F., Sousa, R. A., Boesel, L. F., Neves, N. M., & Reis, R. L. (2004). Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments. Composi. Sci. Technol., 64, 789-817. DOI: 10.1016/j.compscitech.2003.09.001

Mazaheri, M., Hassani, K., Karimi, A., & Izadi, F. (2016). Finite Element Study of Composite Materials as an Alternative for Metal Hip Prothesis Using Variable Load. Materials Focus, 5(5), 430-435.

Mirsayar, M. M., & Park, P. (2016). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240.

Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017). Extended MTSN criterion for fracture analysis of soda lime glass, Engineering Fracture Mechanics 178, 50–59, ISSN: 0013-7944, http://doi.org/10.1016/j.engfracmech.2017.04.018

Morales-Hernandez, D. G., Genetos, D. C., Working, D. M., Murphy, K. C., & Leich, J. K. (2012). Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J. Funct. Biomat., 23, 382-397. DOI: 10.3390/jfb3020382

Mouriño, V., Cattalini, J. P., & Boccaccini, A. R. (2012). Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. Royal Society Interface, 9, 401-419. DOI: 10.1098/rsif.2011.0611

Montheard, J. P., Chatzopoulos, M., & Chappard, D. (1992). 2-hydroxyethylmethacrylate HEMA; chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev., 32, 1–34.

Mullender, M. G., Huiskes, R., (1995). A proposal for the regulatory mechanism of Wolff’s law. J Orthop Res., 13, 503–512. DOI: 10.1002/jor.1100130405

Oh, I., & Harris W. H. (1976). Proximal distribution in the loaded femur. J. of Bone and Joint Surgery, 60-A(1), PMID: 624762. https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties

Peluso, G., Petillo, O., Anderson, J. M., Ambrosio, M., Nicolais, L., Melone, M. A. B., Eschbach, F. O., & Huang, S. J. (1997). The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res., 34, 327–36.

Perillo, L., Sorrentino, R., Apicella, D., Quaranta A. C., Gherlone, E.D, , Ferrari, M., Aversa, R., & Apicella, A. (2010). Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. The journal of adhesive dentistry, 12, 403-413: ISSN: 14615185

Petrescu, F. I. T., & Calautit, K. J. (2016a). About Nano Fusion and Dynamic Fusion, Am. J. Applied Sci. 13(3), 261-266.

Petrescu, F. I. T., & Calautit, K. J. (2016b). About the Light Dimensions, Am. J. Applied Sci. 13(3), 321-325.

Petrescu, F. L., Buzea, E., Nănuţ, L., Neacşa, M., & Nan, C. (2015). The role of antioxidants in slowing aging of skin in a human, Analele Univers. Craiova Biologie Horticultura Tehn. Prel. Prod. Agr. Ing. Med., 20, 567-574.

Petrescu, F. I. T., Apicella, A., Aversa, R., Petrescu, R. V., Calautit, J. K., & Mirsayar, M., (2016a). Something about the Mechanical Moment of Inertia, Am. J. Applied Sci. 13(11), 1085-1090.

Petrescu, R. V., Aversa, R., Apicella, A., Li, S., Chen, G., Mirsayar, M., & Petrescu, F. I. T. (2016b). Something about Electron Dimension, Am. J. Applied Sci. 13(11), 1272-1276.

Petrescu, R. V., Aversa, R., Apicella, A., Berto, F., Li, S., & Petrescu, F. I. T. (2016c). Ecosphere Protection through Green Energy, Am. J. Applied Sci. 13(10), 1027-1032.

Petrescu, F. I. T., Apicella, A., Petrescu, R. V., Kozaitis, S. P., Bucinell, R. B., Aversa, R., & Abu-Lebdeh, T. M. (2016d). Environmental Protection through Nuclear Energy, Am. J. Applied Sci. 13(9), 941-946.

Petrescu, R. V., Aversa, R., Apicella, A., Petrescu, F. I. T. (2016e). Future Medicine Services Robotics, Am. J. of Eng. and Applied Sci. 9(4), 1062-1087.

Petrescu, Fit., Petrescu, Rv., Mirsayar, M.M., 2017. The Computer Algorithm for Machine Equations of Classical Distribution. Journal of Materials and Engineering Structures, 4(4), 193-209. http://revue.ummto.dz/index.php/JMES/article/view/1590

Petrescu, F. I. T., Petrescu, R. V., Mirsayar, M. M. (2018). Inverse Kinematics to a Stewart Platform. Journal of Materials and Engineering Structures, 5(2), 111-122. http://revue.ummto.dz/index.php/JMES/article/view/1623

PETRESCU, F. I. T. (2018). Comp. Part. Mech. https://doi.org/10.1007/s40571-018-0206-7

Reilly, D., & Burstein, A. H. (1974). The mechanical properties of cortical bone. The J. Of bone and Joint Surgery, 56A, 1001-1021

Reilly, D. T., & Burnestain, A. H. (1975). The elastic and ultimate properties of compact bone tissue. J. Biomechanics 8, 393-405, doi:10.1016/0021-9290(75)90075-5

Rohlmann, A., Mossner, U., Bergmann, G., & Kolbel, R., (1982). Finite Element Analysis and experimental investigations of stresses in a femur. J. Biomed. Eng. 4. doi:10.1016/0141-5425(82)90009-7

Schiraldi, C., D’agostino, A., Oliva, A., Flamma, F., De Rosa, A., Apicella, A., Aversa, R., & De Rosa, M. (2004). Development of hybridmaterials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials 25 (17), 3645–3653.

Sorrentino, R. Apicella, D., Riccio, C., Gherlone, E. D., Zarone, F., Aversa, R. E, Garcia-Godoy, F. F., Ferrari, M., & Apicella, A. (2009). Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration, Journal of Biomedical Materials Research - Part B Applied Biomaterials, Volume 91(2, November, 10, 727-736. DOI: 10.1002/jbm.b.31449.

Sorrentino, R., Aversa, R., Ferro, V., Auriemma, T., Zarone, F., Ferrari, M., & Apicella, A. (2007). Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater; 23, 983–93: DOI: 10.1016/j.dental.2006.08.006

Schwartz-Dabney, C. L., & Dechow, P. C. (2003). Variation in Cortical Material Properties Throughout the Human Dentate Mandible. American Journal of Physical Anthropology 120, 252-277.

Tamar, G., & Zvi, Hashin, (1980). Analysis of viscoelastic behavior of bones on the basis of microstructure. J. Biomechanics, 13, 89-96: DOI: http://dx.doi.org/10.1016/0021-9290(80)90182-7

Taylor, D., Hazenberg, J. G., & Lee, T. C. (2007). Living with cracks: Damage and repair in human bone. Nat Mater., 6, 263–268.

Töyräsa, J., Lyyra-Laitinena, T., Niinimäkib, M., Lindgrenc, R., Nieminenb, M. T., Kivirantad, I., & Jurvelina, J. S. (2001). Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. Journal of Biomechanics, 34(2), 251-256

Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). The behavior of adaptive bone remodeling simulation models. J Biomech. 25, 1425–1441. PMID: 1491020

Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald.

Most read articles by the same author(s)

1 2 3 4 > >> 
فروشگاه اینترنتی