About biological hip joint prostheses and the biomechanical behavior of implanted femur
Main Article Content
Abstract
Biofidel femur Models with finite elements were developed using a specific segmentation combination with computed tomography and solid modeling tools capable of representing bone physiology and structural behavior. These biofidel Finite Element Models (FEM) are used to evaluate the change in the physiological distribution of stress in the prosthesis femur and to evaluate the new design criteria for biopsy biopsy biopsy biopsy. The proposed belief patterns allowed us to adequately take into account the non-isotropic features of the proximal femoral epiphysis and isotropic behavior in diaphysis to explain the critical changes in stress distribution in a femur resected after the implantation of a traditional articular prosthesis. It has been shown that a wide range of femoral diaphyses is completely protected by rigid prostheses that significantly alter the physiological distribution of stress, which should guarantee healthy growth and bone regeneration.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Proposal of Policy for Free Access Periodics
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 that allows the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in an institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
Proposal of Policy for Periodic that offer Postponed Free Access
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 [SPECIFY TIME HERE] after the publication, allowing the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
d. They allow some kind of open dissemination. Authors can disseminate their articles in open access, but with specific conditions imposed by the editor that are related to:
Version of the article that can be deposited in the repository:
Pre-print: before being reviewed by pairs.
Post-print: once reviewed by pairs, which can be:
The version of the author that has been accepted for publication.
The editor's version, that is, the article published in the magazine.
At which point the article can be made accessible in an open manner: before it is published in the magazine, immediately afterwards or if a period of seizure is required, which can range from six months to several years.
Where to leave open: on the author's personal web page, only departmental websites, the repository of the institution, the file of the research funding agency, among others.
References
Annunziata, M., Aversa, R., Apicella, A., Annunziata, A., Apicella, D., Buonaiuto, C., & Guida, L. (2006). In vitro biological response to a light-cured composite when used for cementation of composite inlays, Dental Materials, 22(12), 1081-1085. DOI: 10.1016/J.DENTAL.2005.08.009
Annunziata, M., Guida, L., Perillo, L., Aversa, R. & Passaro, I. (2008). Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J. Mater. Sci. Mater. Med., 19, 3585-3591. DOI: 10.1007/s10856-008-3514-2.
Apicella, D., Aversa, R., Ferro, E., Ianniello, D., & Apicella, A., (2010). The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 93(1), 150-163. doi: 10.1002/jbm.b.31569
Apicella, D., Veltri, M., Balleri, P., Apicella, A., & Ferrari, M. (2011). Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation, Clinical Oral Implants Research, 22(2), 182-188: DOI: 10.1111/j.1600-0501.2010.01979.x
Apicella, D., Aversa, R., Tatullo, M., Simeone, M., Sayed, S., Marrelli, M., & Apicella, A. (2015). Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements, Dental Materials, 31(12), e289-e305, DOI: 10.1016/j.dental.2015.09.016
Ashman R. B., & Rho J. Y. (1988). Elastic modulus of trabecular bone material. J. Biomechanics, 21, 177-181. doi:10.1016/0021-9290(88)90167-4
Ashman R. B., Cowin S. C., Van Buskirk W. C., & Rice J. C. (1984). A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomechanics. 17(5), 349-361. doi: 10.1016/0021-9290(84)90029-0
Aversa, R., Apicella, D., Perillo, L., Sorrentino, R., Zarone, F., Ferrari, F., & Apicella, A. (2009). Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental materials, 25, 678–690. doi: 10.1016/j.dental.2008.10.015
Aversa, R., Petrescu, F. I. T., Petrescu, R. V., & Apicella, A. (2016a). Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13, 1060-1067. doi: 10.3844/ajassp.2016.1060.1067
Aversa, R., Parcesepe, D., Petrescu, R. V., Chen, G., Petrescu, F. I. T., Tamburrino, F., & Apicella, A. (2016b). Glassy Amorphous Metal Injection Molded Induced Morphological Defects, Am. J. Applied Sci. 13(12), 1476-1482.
Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016c). Smart-Factory: Optimization and Process Control of Composite Centrifuged Pipes, Am. J. Applied Sci. 13(11), 1330-1341.
Aversa, R., Tamburrino, F., Petrescu, R. V., Petrescu, F. I. T., Artur, M., Chen, G., & Apicella, A. (2016d). Biomechanically Inspired Shape Memory Effect Machines Driven by Muscle like Acting NiTi Alloys, Am. J. Applied Sci. 13(11), 1264-1271.
Aversa, R., Buzea, E. M., Petrescu, R. V., Apicella, A., Neacsa, M., & Petrescu, F. I. T. (2016e). Present a Mechatronic System Having Able to Determine the Concentration of Carotenoids, Am. J. of Eng. and Applied Sci. 9(4), 1106-1111.
Aversa, R., Petrescu, R. V., Sorrentino, R., Petrescu, F. I. T., & Apicella, A. (2016f). Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation, Am. J. of Eng. and Applied Sci. 9(4), 1096-1105.
Aversa, R., Perrotta, V., Petrescu, R. V., Misiano, C., Petrescu, F. I. T., & Apicella, A. (2016g). From Structural Colors to Super-Hydrophobicity and Achromatic Transparent Protective Coatings: Ion Plating Plasma Assisted TiO2 and SiO2 Nano-Film Deposition, Am. J. of Eng. and Applied Sci. 9(4), 1037-1045.
Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016h). Biomimetic and Evolutionary Design Driven Innovation in Sustainable Products Development, Am. J. of Eng. and Applied Sci. 9(4), 1027-1036.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016i). Mitochondria are Naturally Micro Robots - A review, Am. J. of Eng. and Applied Sci. 9(4), 991-1002.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016j). We are Addicted to Vitamins C and E-A Review, Am. J. of Eng. and Applied Sci. 9(4), 1003-1018.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016k). Physiologic Human Fluids and Swelling Behavior of Hydrophilic Biocompatible Hybrid Ceramo-Polymeric Materials, Am. J. of Eng. and Applied Sci. 9(4), 962-972.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016l). One Can Slow Down the Aging through Antioxidants, Am. J. of Eng. and Applied Sci. 9(4), 1112-1126.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016m). About Homeopathy or ≪Similia Similibus Curentur≫, Am. J. of Eng. and Applied Sci. 9(4), 1164-1172.
Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016n). The Basic Elements of Life's, Am. J. of Eng. and Applied Sci. 9(4), 1189-1197.
Aversa, R., Petrescu, F. I. T., Petrescu, R. V., & Apicella, A. (2016o). Flexible Stem Trabecular Prostheses, Am. J. of Eng. and Applied Sci. 9(4), 1213-1221.
Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2017). Modern Transportation and Photovoltaic Energy for Urban Ecotourism. Transylvanian Review of Administrative Sciences Special Issue, 5-20. doi: 10.24193/tras.SI2017.1
Beaupre G. S., & Hayes W. C. (1985). Finite Element Analysis of a three dimensional open-celled model for trabecular bone. J. Biomech. Eng. 107, 249-56, PMID: 4046566
Bonfield, W., Grynpas, M. D., Tully, A. E., Bowman, J., & Abram, J. (1981). Hydroxyapatite reinforced polyethylene — a mechanically compatible implant material for bone replacement. Biomaterials, 2, 185-186. doi: 10.1016/0142-9612(81)90050-8
Burnstein A., Reilly D. T., & Martens M. (1976). Aging of bone tissue: Mechanical properties., J. of Bone and joint Surgery, 58, 82-86, https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties
Carter D. R., & Hayes W. C. (1977). The compressive behavior of bone as a two phase porous structure. J. of Bone and joint Surgery, 59A: 954, PMID: 561786
Comerun, H. U. (1986). Six-year results with a microporous-coated metal hip prosthesis, Clin. Orthop. 208 81
Čepelak I., Dodig, S., & Čulić, O. (2013). Magnesium-more than a common cation. Med. Sci., 39, 47-68.
Chen, Q., Zhu, C., & Thouas, G. A. (2012). Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites. Progress. Biomater., 1, 1-22. DOI: 10.1186/2194-0517-1-2
Cormack, A. N., & Tilocca, A. (2012). Structure and biological activity of glasses and ceramics. Philos. Trans. Math. Phys. Eng. Sci., 370, 1271-1280. DOI: 10.1098/rsta.2011.0371
Dalstyra, M., Huiskes, R., Odgaard, A., & Van Erning, L. (1993). Mechanical and textural properties of Pelvic Trabecular Bone. J. Biomechanics, 26(4-5), 349-361, DOI: 10.1016/0021-9290(93)90014-6
Davis, P. A., Huang, S. J., Nicolais, L., & Ambrosio, L. (1991). Modified PHEMA Hydrogels. In: Szycher M, editor. High performance biomaterials. Lancaster, PA, USA: Technonic. 343–68.
Prashantha, K., Vasanth, K. P. K., Sherigara, B. S., & Prasannakumar S. (2001). Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly-(2-hydroxyethylmethacrylate), synthesis, chemical, mechanical and thermal properties, bull. Mater Sci., 24(5), 535–8.
Filmon, R., Grizon, F., Baslie, M. F., & Chappard, D. (2002). Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethylmethacrylate). Biomaterials. 23, 3053–9.
Frost, H. M. (1064). Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas. 22–25.
Frost, H. M. (1990). Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec. 226, 414–22.
Frost, H. M. (2003). update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 74, 3–15.
Frost, H. M. (1994). Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64, 175–88.
Gramanzini, M., Gargiulo, S., Zarone, F., Megna, R., Apicella, A., Aversa, R., Salvatore, M., Mancini, M., Sorrentino, R., & Brunetti, A., (2016). Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: A pilot study in minipig model. Dental Materials, 32(6), 794-806: DOI: 10.1016/j.dental.2016.03.025
Gorustovich, A. A., Roether, J. A., & Boccaccini, A. R. (2010). Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Eng. Part B Rev., 16, 199-207. DOI: 10.1089/ten.TEB.2009.0416
Halpin J. C., & Kardos J. L. (1976). Halpin-Tsai equations: A review, Polymer Engineering and Science, 16(5), 344-352
Heinemann, S., Heinemann, C., Wenisch, S., Alt, V., & Worch, H. (2013). Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomaterialia, 9, 4878-4888. DOI: 10.1016/j.actbio.2012.10.010
Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295, 1014-1017. DOI: 10.1126/science.1067404
Hench, L. L., & Thompson, I. (2010). Twenty-first century challenges for biomaterials. J. Royal Society Interface, 7, S379-S391. DOI: 10.1098/rsif.2010.0151.focus
Hench, L. L., & Wilson, J. (1993). An introduction to bioceramics. World Sci., 1, 396-396. DOI: 10.1142/2028
Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32, 2757-2774. DOI: 10.1016/j.biomaterials.2011.01.004
Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudula, B., & Slooff, T. J. (1987). Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 20, 1135–1150.
Hutmacher, D.W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543. DOI: 10.1016/S0142-9612(00)00121-6
Jones, J. R., & Clare, A. G. (2012). Bio-Glasses. An Introduction. 1st Edn., Wiley, Chichester, ISBN-10: 1118346475, 320.
Julien, M., Magne, D., Masson, M., Rolli-Derkinderen, M., & Chassande, O. (2007). Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology, 148, 530-537. DOI: 10.1210/en.2006-0763
Kabra, B., Gehrke, S. H., Hwang, S. T., & Ritschel, W. (1991). Modification of the dynamic swelling behaviour of pHEMA. J Appl Polym Sci. 42, 2409–16.
Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491. doi: 10.1016/j.biomaterials.2005.02.002
Kim, H. W., Knowles, J. C., & Kim, H. E. (2004). Development of hydroxyapatite bone scaffold for controlled drug release via poly(ϵ-caprolactone) and hydroxyapatite hybrid coatings. J. Biomed. Mater. Res. Part B: Applied Biomater., 70, 240-249. DOI: 10.1002/jbm.b.30038
Kumar, A., Rathi, A., Singh, J., & Sharma, N. K. (2016). Studies on Titanium Hip Joint Implants using Finite Element Simulation. In Proceedings of the World Congress on Engineering, 2.
Kummer, B. (1986). Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory, Zeitschrift fur Orthopadie und Ihre Grenzgebiete, 124(2), 179-187.
Mano, J. F., Sousa, R. A., Boesel, L. F., Neves, N. M., & Reis, R. L. (2004). Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments. Composi. Sci. Technol., 64, 789-817. doi: 10.1016/j.compscitech.2003.09.001
Mazaheri, M., Hassani, K., Karimi, A., & Izadi, F. (2016). Finite Element Study of Composite Materials as an Alternative for Metal Hip Prothesis Using Variable Load. Materials Focus, 5(5), 430-435.
Mirsayar, M. M., & Park, P. (2016). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240.
Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017). Extended MTSN criterion for fracture analysis of soda lime glass, Engineering Fracture Mechanics 178, 50–59, ISSN: 0013-7944, doi: 10.1016/j.engfracmech.2017.04.018
Morales-Hernandez, D. G., Genetos, D. C., Working, D. M., Murphy, K. C., & Leich, J. K. (2012). Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J. Funct. Biomat., 23, 382-397. doi: 10.3390/jfb3020382
Mouriño, V., Cattalini, J. P., & Boccaccini, A. R. (2012). Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. Royal Society Interface, 9, 401-419. doi: 10.1098/rsif.2011.0611
Montheard, J. P., Chatzopoulos, M., Chappard, D. (1992). 2-hydroxyethylmethacrylate HEMA; chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev. 32, 1–34.
Mullender, M. G., & Huiskes, R. (1995). A proposal for the regulatory mechanism of Wolff’s law. J Orthop Res.13, 503–512. doi: 10.1002/jor.1100130405
Oh, I., & Harris W. H. (1976). Proximal distribution in the loaded femur. J. of Bone and Joint Surgery, 60-A(1) PMID: 624762 https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties
Peluso, G., Petillo, O., Anderson, J. M., Ambrosio, M., Nicolais, L., Melone, M. A. B., Eschbach, F. O., & Huang, S. J. (1997). The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 34, 327–36.
Perillo, L., Sorrentino, R., Apicella, D., Quaranta, A. C., Gherlone, E.D., Ferrari, M., Aversa, R., & Apicella, A. (2010). Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. The journal of adhesive dentistry, 12(5), 403-413: ISSN: 14615185
Petrescu, F. I. T., & Calautit, K. J. (2016a). About Nano Fusion and Dynamic Fusion, Am. J. Applied Sci. 13(3), 261-266.
Petrescu, F. I. T., & Calautit, K. J. (2016b). About the Light Dimensions, Am. J. Applied Sci. 13(3), 321-325.
Petrescu, F. L., Buzea, E., Nănuţ, L., Neacşa, M., & Nan, C. (2015). The role of antioxidants in slowing aging of skin in a human, Analele Univers. Craiova Biologie Horticultura Tehn. Prel. Prod. Agr. Ing. Med., 20, 567-574.
Petrescu, F. I. T., Apicella, A., Aversa, R., Petrescu, R. V., Calautit, J. K., & Mirsayar, M. (2016a). Something about the Mechanical Moment of Inertia, Am. J. Applied Sci. 13(11), 1085-1090.
Petrescu, R. V., Aversa, R., Apicella, A., Li, S., Chen, G., Mirsayar, M., & Petrescu, F. I. T. (2016b). Something about Electron Dimension, Am. J. Applied Sci. 13(11), 1272-1276.
Petrescu, R. V., Aversa, R., Apicella, A., Berto, F., Li, S., & Petrescu, F. I. T. (2016c). Ecosphere Protection through Green Energy, Am. J. Applied Sci. 13(10), 1027-1032.
Petrescu, F. I. T., Apicella, A., Petrescu, R. V., Kozaitis, S. P., Bucinell, R. B., Aversa, R., & Abu-Lebdeh, T. M. (2016d). Environmental Protection through Nuclear Energy, Am. J. Applied Sci. 13(9), 941-946.
Petrescu, R. V., Aversa, R., Apicella, A., Petrescu, F. I. T. (2016e). Future Medicine Services Robotics, Am. J. of Eng. and Applied Sci. 9(4), 1062-1087.
Petrescu, F. I. T., Petrescu, R. V., & Mirsayar, M. M. (2017). The Computer Algorithm for Machine Equations of Classical Distribution. Journal of Materials and Engineering Structures, 4(4), 193-209. http://revue.ummto.dz/index.php/JMES/article/view/1590
Petrescu, F. I. T., Petrescu, R. V., & Mirsayar, M. M. (2018). Inverse Kinematics to a Stewart Platform. Journal of Materials and Engineering Structures, 5(2), 111-122. http://revue.ummto.dz/index.php/JMES/article/view/1623
Petrescu, F. I. T. (2018). Comp. Part. Mech. https://doi.org/10.1007/s40571-018-0206-7
Reilly, D., & Burstein A. H. (1974). The mechanical properties of cortical bone. The J. Of bone and Joint Surgery, 56a(5), 1001-1021
Reilly D. T., & Burnestain A. H. (1975). The elastic and ultimate properties of compact bone tissue. J. Biomechanics, 8, 393-405, doi:10.1016/0021-9290(75)90075-5
Rohlmann, A., Mossner, U., Bergmann, G., & Kolbel R. (1982). Finite Element Analysis and experimental investigations of stresses in a femur. J. Biomed. Eng. 4. doi:10.1016/0141-5425(82)90009-7
Schiraldi, C., D’agostino, A., Oliva, A., Flamma, F., De Rosa, A., Apicella, A., Aversa, R., & De Rosa, M. (2004). Development of hybridmaterials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 25(17), 3645–3653.
Sorrentino, R., Apicella, D., Riccio, C., Gherlone, E. D., Zarone, F., Aversa, R. E., Garcia-Godoy, F. F., Ferrari, M., & Apicella, A. (2009). Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 91(2), 727-736; doi: 10.1002/jbm.b.31449 (10)
Sorrentino, R., Aversa, R., Ferro, V., Auriemma, T., Zarone, F., Ferrari, M., Apicella, A. (2007). Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater. 23, 983–93: doi: 10.1016/j.dental.2006.08.006
Schwartz-Dabney, C. L., & Dechow, P. C. (2003). Variation in Cortical Material Properties Throughout the Human Dentate Mandible. American Journal of Physical Anthropology. 120, 252-277.
Tamar, G., & Hashin, Z. V. I. (1980). Analysis of viscoelastic behavior of bones on the basis of microstructure. J. Biomechanics, 13, 89-96: DOI: http://dx.doi.org/10.1016/0021-9290(80)90182-7
Taylor, D., Hazenberg, J. G., & Lee T. C. (2007). Living with cracks: Damage and repair in human bone. Nat Mater. 6, 263–268.
Töyräsa, J., Lyyra-Laitinena, T., Niinimäkib, M., Lindgrenc, R., Nieminenb, M. T., Kivirantad, I., & Jurvelina, J. S. (2001). Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. Journal of Biomechanics, 34(2), 251-256
Weinans, H., Huiskes, R., &Grootenboer, H. J. (1992). The behavior of adaptive bone remodeling simulation models. J Biomech. 25, 1425–1441. PMID: 1491020
Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald.