Multivariate analysis of the displacements of a concrete dam with respect to the action of environmental conditions

Main Article Content

Sheila Regina Oro
Anselmo Chaves Neto
Tereza Rachel Mafioleti
Suellen Ribeiro Pardo Garcia
Cláudio Neumann Júnior
صندلی اداری

Abstract

A review of the concrete dam’s structural performance is a complex issue comprised of many dimensions. This article proposes a method to assist in monitoring the displacements of structures and foundations of dams, considering the action of environmental conditions. Multivariate techniques are used to analyze the data pendulums, extensometer bases and multiple rods extensometer, along with environmental variables of the concrete surface temperature, ambient temperature and the reservoir water level. Specifically applies to Canonical Correlation Analysis to evaluate the influence of environmental variables in the displacement of structures and foundations. Factor Analysis identifies the factors inherent to the variability of the data. This technique makes it possible to order the variables considering the action of factors. This applies also to Cluster Analysis on the data of dates of measurements, according to the similarities present in the observations. Then, Discriminant Analysis evaluates the formed groups for uniformity. The results demonstrate that the method can distinguish the dam responses and identify the effects of variations in environmental conditions over the displacements of structures and foundations.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

BUZZI, M. F. (2007) Avaliação das correlações de séries temporais de leituras de instrumentos de monitoração geotécnico-estrutural e variáveis ambientais em barragens - estudo de caso de Itaipu. Dissertação—Métodos Numéricos em Engenharia: UFPR.

CARVALHO, J. V.; ROMANEL, C. (2007) Redes neurais temporais aplicadas ao monitoramento de barragens. Revista Eletrônica de Sistemas de Informação, n. 10.

CHENG, L.; ZHENG, D. (2013) Two online dam safety monitoring models based on the process of extracting environmental effect. Advances in Engineering Software, v. 57, p. 48–56, mar.

CRUZ, P. T. (2006) 100 barragens brasileiras: casos históricos, materiais de construção, projeto. São Paulo: Oficina dos Textos.

DENG, N.; WANG, J.-G.; SZOSTAK-CHRZANOWSKI, A. (2008) Dam Deformation Analysis Using the Partial Least Squares Method. Proceedings in 13th FIG Int. Symp. on Deformation Measurements and Analysis & 4th IAG Symp. on Geodesy for Geotechnical and Structural Engineering. Lisbon.

DE SORTIS, A.; PAOLIANI, P. (2007) Statistical analysis and structural identification in concrete dam monitoring. Engineering Structures, v. 29, p. 110–120.

FARRAR, C. R.; WORDEN, K. (2007) An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A, v. 365, p. 303–315.

FIGUEIREDO, E.; PARK, G.; FARRAR, C. R.; WORDEN, K.; FIGUEIRAS, J. (2011) Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, v. 10, n. 6, p. 559–572, nov.

GUEDES, Q. M.; DE FARIA, É. F. (2007) Modelo estatístico de controle do deslocamento monitorado na barragem casca da UHE Funil. Proceedings in XXVII SEMINÁRIO NACIONAL DE GRANDES BARRAGENS. Belém, PA, jun.

JIN-PING, H.; YU-QUN, S. (2011) Study on TMTD Statistical Model of Arch Dam Deformation Monitoring. Procedia Engineering, v. 15, p. 2139–2144.

JOHNSON, R. A.; WICHERN, D. W. (2007) Applied Multivariate Statistical Analysis. 6. ed. Pearson.

KUPERMAN, S. C.; MORETTI, M. R.; CIFU, S; CELESTINO, T. B.; RE, G.; ZOELLNER, K. (2205) Criteria to establish limit values of instrumentation readings for old embankment and concrete dams.

LI, F.; WANG, Z. Z.; LIU, G. (2013) Towards an error correction model for dam monitoring data analysis based on cointegration theory. Structural Safety, v. 43, p. 12–20.

MATA, J. (2011) Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models. Engineering Structures, v. 33, p. 903–910.

MATA, J.; TAVARES DE CASTRO, A.; SÁ DA COSTA, J. (2013) Time–frequency analysis for concrete dam safety control: Correlation between the daily variation of structural response and air temperature. Engineering Structures, v. 48, p. 658–665.

Matlab R2013 (2013). Math Works.

MATOS, S. F. (2002) Avaliação de instrumentos para auscultação de barragem de concreto. Estudo de caso: deformímetros e tensômetros para concreto na Barragem de Itaipu. Dissertação—Curitiba, PR: UFPR.

MEDEIROS, C. H.; LOPES, M. G. M. (2011) O Risco da Classificação de Barragens por Categoria de risco, com Base em Método de Ponderação de Fatores. Sessão Técnica apresentado em XXVIII Seminário Nacional de Grandes Barragens. Rio de Janeiro.

MUJICA, L. E.; RUIZ, M.; POZO, F.; RODELLAR, J. (2014) A structural damage detection indicator based on principal component analysis and statistical hypothesis testing. Smart Materials and Structures, v. 23, n. 2, p. 25014–25025, Fev.

Statgraphics Centurion XVI (2010). StatPoint Technologies.

VILLWOCK, R.; STEINER, M. T. A.; DYMINSKI, A. S.; CHAVES NETO, A. (2013) Itaipu Hydroelectric Power Plant Structural Geotechnical Instrumentation Temporal Data Under the Application of Multivariate Analysis - Grouping and Ranking Techniques. In: Multivariate Analysis in Management, Engineering and the Sciences. [s.l.] InTech, p. 81–102.

XU, C.; YUE, D.; DENG, C. (2012) Hybrid GA/SIMPLS as alternative regression model in dam deformation analysis. Engineering Applications of Artificial Intelligence, v. 25, p. 468–475, abr.

فروشگاه اینترنتی