Pert using Fuzzy variables and probability distribution function randomly selected




Pert, Fuzzy Sets, Project Management


Program Evaluation and Review Technique (PERT) is widely used for project management in real world applications. The aim of this paper is to simulate and analyze a PERT network under conditions of uncertainty though a hybrid model. The basic assumption is that a project under extreme conditions of uncertainty can be satisfactorily modelled by using simple fuzzy linguistic variables to estimate activities durations, and a probability distribution function randomly selected in order to measure the activity times. Fuzzy linguistic expressions are used to estimate the activity time. Activity parameters are calculated by using basic operations between triangular fuzzy numbers and centroid method with classical Beta PERT definition. For each activity time a probability distribution function is randomly selected from a set of four possible distributions commonly cited in the literature. Hypothetical projects with 4, 40, 400 and 4000 activities using the proposed model are analyzed; the project duration is estimated through Monte Carlo Simulation. Finally, results are analyzed and compared with classical Beta PERT technique.


ABDELKADER, Y. H. (2004) Evaluating project completion times when activity times are Weibull distributed. European Journal of Operational Research, v. 157, n. 3, p. 704–715. DOI: 10.1016/S0377-2217(03)00269-8.

BENDELL, A.; SOLOMON, D.; CARTER, J. M. (1995) Evaluating Project Completion Times When Activity Times are Erlang Distributed. Journal of the Operational Research Society, v. 46, n. 7, p. 867–882. DOI:10.2307/2583969.

CHANAS, S.; ZIELIŃSKI, P. (2001) Critical path analysis in the network with fuzzy activity times. Fuzzy Sets and Systems, v. 122, n. 3, p. 195–204. DOI: 10.1016/S0165-0114(00)00076-2.

CHEN, S. P. (2007) Analysis of critical paths in a project network with fuzzy activity times. European Journal of Operational Research, v. 183, n. 1, p. 442–459. DOI: 10.1016/j.ejor.2006.06.053.

CHEN, C. T.; HUANG, D. F. (2007) Applying fuzzy method for measuring criticality in project network. Information Sciences, v. 177, n. 12, p. 2448–2458. DOI: 10.1016/j.ins.2007.01.035.

CHEN, S. P.; HSUEH, Y. J. (2008) A simple approach to fuzzy critical path analysis in project networks. Applied Mathematical Modelling, n. 32, p. 1289–1297. DOI: 10.1016/j.apm.2007.04.009.

GANI, A. N.; ASSARUDEEN, S. N. M. (2012) A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Applied Mathematical Sciences, n. 6, p. 525–532.

GLADYSZ, B. (2017) Fuzzy-probabilistic PERT. Annals of Operations Research, n. 258, p. 437-452. DOI: 10.1007/s10479-016-2315-0.

GREENBERG, D.; BEN-YAIR, A. (2010) Beta-Distribution Models in Stochastic Project Management. Computer Modelling and New Technologies, v. 14, n. 4, p. 14–18.

HAHN, E. D. (2008) Mixture densities for project management activity times: A robust approach to PERT. European Journal of Operational Research, v. 188, p. 450–459. DOI: 10.1016/j.ejor.2007.04.032.

HAJDU, M. (2013) Effects of the application of activity calendars on the distribution of project duration in PERT networks. Automation in Construction, n. 35, p. 397–404. DOI: 10.1016/j.autcon.2013.05.025.

HAJDU, M.; BOKOR, O. (2016) Sensitivity analysis in PERT networks: Does activity duration distribution matter? Automation in Construction, n. 65, p. 1–8. DOI: 10.1016/j.autcon.2016.01.003.

HERMANS, B.; LEUS, R. (2018) Scheduling Markovian PERT networks to maximize the net present value: New results. Operations Research Letters, n. 46, p. 240-244. DOI: 10.1016/j.orl.2018.01.010.

HERRERÍAS-VELASCO, J. M.; HERRERÍAS-PLEGUEZUELO, R.; VAN DORP, J. R. (2011) Revisiting the PERT mean and variance. European Journal of Operational Research, v. 210, n. 2, p. 448–451. DOI: 10.1016/j.ejor.2010.08.014.

HSIAU, H. J. R.; LIN, C. W. (2009) A fuzzy pert approach to evaluate plant construction project scheduling risk under uncertain resources capacity. Journal of Industrial Engineering and Management, v. 2, n. 1, p. 31–47. DOI: 10.3926/jiem..v2n1.p31-47.

KAMBUROWSKI, J. (1997) New validations of PERT times. Omega, International Journal of Management Science, v. 25, n. 3, p. 323–328. DOI: 10.1016/S0305-0483(97)00002-9.

KE, H.; LIU, B. (2010) Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, v. 34, n. 2, p. 301–308. DOI: 10.1016/j.apm.2009.04.011.

LIBERATORE, M. J. (2008) Critical Path Analysis With Fuzzy Activity Times. IEEE Transactions on Engineering Management, v. 55, n. 2, p. 329–337. DOI: 10.1109/TEM.2008.919678.

LIBERATORE, M. J. (2016) A counterexample to the forward recursion in fuzzy critical path analysis under discrete fuzzy sets, International Journal of Fuzzy Logic Systems, n. 6, p. 53-62. DOI: 10.5121/ijfls.2016.6204.

LÓPEZ MARTÍN, M. M.; GARCÍA GARCÍA, C. B.; GARCÍA PÉREZ, J.; SÁNCHEZ GRANERO, M. (2012) An alternative for robust estimation in project management. European Journal of Operational Research, v. 220, n. 2, p. 443–451. DOI: 10.1016/j.ejor.2012.01.058.

MALCOLM, D. G.; ROSEBOOM, J. H.; CLARK, C. E.; FAZAR, W. (1959) Application of a Technique for Research and Development Program Evaluation. Operations Research, v. 7, n. 5, p. 646–669. DOI: 10.1287/opre.7.5.646.

MCCOMBS, E. L.; ELAM, M. E.; PRATT, D. B. (2009) Estimating Task Duration in PERT using the Weibull Probability Distribution. Journal of Modern Applied Statistical Methods, v. 8, n. 1, p. 282–288.

MOHAN, S.; GOPALAKRISHNAN, M.; BALASUBRAMANIAN. H.; CHANDRASHEKAR, A. (2007) A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, v. 58, n. 6, p. 827–831. DOI: 10.1057/palgrave.jors.2602204.

NASSERI, H. (2008) Fuzzy Numbers : Positive and Nonnegative, International Mathematical Forum, v. 3, n. 36, p. 1777-1780.

PREMACHANDRA, I. M. (2001) An approximation of the activity duration distribution in PERT. Computers & Operations Research, n. 28, p. 443–452. DOI: 10.1016/S0305-0548(99)00129-X.

ROSS, T. J. (2010) Fuzzy logic with engineering applications. UK: John Wiley & Sons.

SHANKAR, N. R.; RAO, K. S. N.; SIREESHA, V. (2010) Estimating the Mean and Variance of Activity Duration in PERT. International Mathematical Forum, v. 5, n. 18, p. 861–868.

UEHARA, K.; HIROTA, K. (1998) Parallel and multistage fuzzy inference based on families of α-level sets. Journal of Information Science, n. 106, p. 159-195.

WANG, W-J.; LUOH, L. (2000) Simple computation for the defuzzifications of center of sum and center of gravity. Journal of Intelligent and Fuzzy Systems, n. 9, p. 53-59.

ZADEH, L. A. (1974) The Concept of a Linguistic Variable and its Application to Approximate Reasoning. In Fu, K.S. et al. (eds.), Learning Systems and Intelligent Robots, p. 1–10.

ZADEH, L. A. (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, n. 8, p. 199–249.

ZADEH, L. A. (1999) Fuzzy Sets as a basis for a theory of possibility. Fuzzy Sets and Systems, v. 100, n. 1, p. 9–34.

ZHANG, H.; TAM, C.M.; LI, H. (2005) Modeling uncertain activity duration by fuzzy number and discrete-event simulation. European Journal of Operational Research, n. 164, p. 715–729. DOI: 10.1016/j.ejor.2004.01.035.