Comparative analyzes of technological tools between industry 4.0 and smart cities approaches: the new society ecosystem
Main Article Content
Abstract
Today the growth of modern cities is unprecedented in the history of urbanization and the urban environmental problems have also been increased. Unfortunately, there is no much time to modify past failures and improve the status quo, and ensure the protection of the environment. Consequently, it’s important to pay attention to the development of sustainable urban planning and its role in urban management issues is an objective that requires a new approach.
On the other hand, Industry 4.0 (I.4.0), as called the 4th Industrial Revolution, carries impacts in the production on companies, the economy and society, with disruptive character, creating new markets and destabilizing the traditional way of doing business. Once I.4.0 is a strategic approach to the integration of advanced control systems with internet technology, enabling communication between people, products and complex systems, it’s expected to follow the same in the Smart Cities development.
This article aims to relate technological tools of I.4.0 and the dimensions of “Smart Cities”, based on analytical framework for better understanding the emergence of new society ecosystem focused on the redefinition of the cities’ concept, urbanism and way of life, motivated by this new reconfiguration.
Downloads
Article Details
1. Proposal of Policy for Free Access Periodics
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 that allows the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in an institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
Proposal of Policy for Periodic that offer Postponed Free Access
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 [SPECIFY TIME HERE] after the publication, allowing the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
d. They allow some kind of open dissemination. Authors can disseminate their articles in open access, but with specific conditions imposed by the editor that are related to:
Version of the article that can be deposited in the repository:
Pre-print: before being reviewed by pairs.
Post-print: once reviewed by pairs, which can be:
The version of the author that has been accepted for publication.
The editor's version, that is, the article published in the magazine.
At which point the article can be made accessible in an open manner: before it is published in the magazine, immediately afterwards or if a period of seizure is required, which can range from six months to several years.
Where to leave open: on the author's personal web page, only departmental websites, the repository of the institution, the file of the research funding agency, among others.
References
AHMED, E.; YAQOOB, I.; GANI, A.; IMRAN, M.; GUIZANI, M. (2016) Internet-of-Things-Based Smart Environments: State of the Art, Taxonomy, and Open Research Challenges. Enabling Wireless Communications and Networking Technologies for the Internet of Things, IEEE Wireless Communications, October, p. 10-16.
AHVENNIEMI, H.; HUOVILA, A.; PINTO-SEPPÄ, I.; AIRAKSINEN, M. (2017) What are the differences between sustainable and smart cities? Cities, v. 60, n. A, p. 234-245.
ANDERL, R. (2014) Industrie 4.0 - Advanced Engineering of Smart Products and Smart Production. ResearchGate, Conference Paper from October 2014. (Online) Available from: https://www.researchgate.net/publication/270390939 (Accessed: August 24th 2016)
ANTHOPOULOS, L. (2016) Smart utopia VS smart reality - 10 smart city cases. Cities, v. 63, p. 128–148.
BADII, C.; BELLINI, P.; CENNI, D.; DIFINO, A.; NESI, P.; PAOLUCCI, M. (2017) Analysis and assessment of a knowledge based smart city architecture providing service APIs. Future Generation Computer Systems, v. 75, n. 14–29.
BAKICI, T.; ALMIRALL, E.; WAREHAM, J. (2013) A smart city initiative: The case of Barcelona. Journal of the Knowledge Economy, v. 4, n. 2, p. 135–148.
BANKS, J. (1998) Handbook of simulation: principles, methodology, advances, applications, and practice.
BASIRI, M.; AZIM, A. Z.; FARROKHI, M. (2017) Smart City Solution for Sustainable Urban Development. European Journal of Sustainable Development, v. 6, n. 1, p. 71-84.
BROOKS, R. A. (1991) Artificial Intelligence - Intelligence without representation.
CARAGLIU, A.; DEL BO, C.; NIJKAMP, P. (2009; 2011) Smart cities in Europe. 3rd Central European Conference in Regional Science – CERS, p. 45-59.
CEBREIROS, J.; GULÍN, M. P. (2014) Guia Smart Cities - Cidades com futuro, Agenda Digital local, Spain, 1ª Edição, p. 1-150.
COCCHIA, A. (2014) Smart and Digital City: A systematic literature review. In DAMERI, R. P.; ROSENTHAL-SABROUX, C. (Eds.), Smart City, p. 13–43.
EUROPEAN SMART CITIES 4.0 (2015) Available from: http://www.smart-cities.eu/?cid=2&ver=4 (Accessed: November 5th ‘2017)
FLEICH, E. (2010) What is the Internet of Things? Auto-ID Labs.
GAUR, A.; SCOTNEY, B.; PARR, G.; MCCLEAN, S. (2015) Smart City Architecture and its Applications based on IoT. Procedia Computer Science, v. 52, p. 1089-1094.
GERLITZ, L. (2015) Design for product and service innovation in Industry 4.0 and emerging smart society. Journal of Security and Sustainability, v. 5, n. 2, p. 181–198.
GLOBAL CITIES INSTITUTE-GCI, (2015) Cities and sustainable infrastructure. GCIF Policy snapshot nº 3, Cities and Sustainable Infrastructure Series, n. 1, p. 1-40.
GRAHAM, S.; MARVIN, S. (2001) Splintering urbanism: Networked infrastructures, technological Mobilities and the urban conditions. Routledge, 1st edition, p. 1-481.
HERMANN, M.; TOBIAS, P.; BORIS, O. (2015) Design Principles for Industrie 4.0 Scenarios: A Literature Review.
HOPEN, J. (2015) 7 características importantes para diferenciar BI, Data Mining e Big Data. Available from: https://aquare.la/7-caracteristicas-importantes-para-diferenciar-bi-data-mining-e-big-data/ (Accessed: September 19th ‘2017)
KAGERMANN, H.; WAHLSTER, W.; HELBIG, J. (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0. acatech-National Academy of Science and Engineering, p. 1-82.
KARAKOSE, M.; YETIS, H. (2017) A Cyberphysical System Based Mass-Customization Approach with Integration of Industry 4.0 and Smart City. Hindawi Wireless Communications and Mobile Computing, v. 2017, n. 9, p. 1-10.
KOURTIT, K.; NIJKAMP, P. (2012) Smart cities in the innovation age. IGI Global, 1st edition: 1-660
KOURTIT, K.; NIJKAMP, P.; STEENBRUGGEN, J. (2017) The significance of digital data systems for smart city policy. Socio-Economic Planning Sciences, v. 58, p. 13-21.
KUMMITHA, R. K. R.; CRUTZEN, N. (2017) How do we understand smart cities? Cities, v. 67, p. 43-52.
KYLILI, A.; FOKAIDES, P. A. (2015) European smart cities: The role of zero energy buildings.
LJAZ, S.; SHAH, M. A.; KHAN, A.; AHMED, M. (2016) Smart Cities: A Survey on Security Concerns. IJACSA-International Journal of Advanced Computer Science and Applications, v. 7, n. 2, p. 1-14.
LOM, M.; PRIBYL, O.; SVITEK, M. (2016) Industry 4.0 as a Part of Smart Cities. Smart Cities Symposium Prague, p. 1-6.
MACHADO, R. T. M. (2000) Rastreabilidade, Tecnologia da Informação e coordenação de sistemas Agroindustriais.
MAGLIO, P. P.; LIM, C. H. (2016) Innovation and Big Data in Smart Service Systems.
MAIER, S. (2016) Smart energy systems for smart city districts: case study Reininghaus District. Maier Energy, Sustainability and Society, p. 6-23.
MARTIN, M. (2015) Building the impact economy: Our future, yea or nay. Springer International Publishing Switzerland, p. 1-209.
MARTÍNEZ-BARBERÁ, H.; HERRERO-PÉREZ, D. (2009) Autonomous navigation of an automated guided vehicle in industrial environments.
MASEK, P.; MASEK, J.; FRANTIK, P.; FUJDIAK, R.; OMETOV, A.; HOSEK, J.; REEV, S.; MLYNEK, P.; MISUREC, J. (2016) A Harmonized Perspective on Transportation Management in Smart Cities: The Novel IoT-Driven Environment for Road Traffic Modeling.
MELL, P.; GRANCE T. (2011) The NIST definition of cloud computing.
METZNER, V.; SILVA, R.; CUGNASCA, C. (2014) Modelo de rastreabilidade de medicamentos utilizando identificação por radiofrequência, redes de sensores sem fio e o conceito de Internet das Coisas, ANPET.
MILOSLAVSKAYA, N.; TOLSTOY, A. (2016) Big Data, Fast Data and Data Lake Concepts.
MINOLI, D.; SOHRABY, K.; OCCHIOGROSSO, B. (2017) IoT Considerations, Requirements, and Architectures for Smart Buildings-Energy Optimization and Next-Generation Building Management Systems. IEEE Internet Of Things Journal, v. 4, n. 1, p. 269-283.
PARASURAMAN, R.; SHERIDAN, T. B.; WICKENS C. D. (2000) A Model for Types and Levels of Human Interaction with Automation.
PRYTULA, L. (2011) Sensor inteligente.
ROBLEK, V.; MEŠKO, M.; KRAPEŽ, A. (2016) A Complex View of Industry 4.0. SAGE Open, April-June, p. 1-11.
RUSSOM, P. (2011) Big Data Analytics.
SAMPRI, A.; MAVRAGANI, A.; TSAGARAKIS, K. P. (2016) Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA.
SANDERSON, D. (2010) Programming Google App Engine: Build and Run Scalable Web Apps on Google’s Infrastructure, O’Reilly Media.
SCHUMACHER, A.; EROLB, S.; SIHNA, W. (2016) A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises.
SCHWAB, K. (2016) A Quarta Revolução Industrial - World Economic Forum.
SOLMS, R. V.; NIEKERK, J. V. (2013) From information security to cyber security.
TALARI, S.; SHAFIE-KHAH, M.; SIANO, P.; LOIA, V.; TOMMASETTI, A.; CATALÃO, J. P. S. (2017) A Review of Smart Cities Based on the Internet of Things Concept. Energies, v. 10, n. 421, p. 1-23.
THOMPSON, C. W. (2005) Smart devices and soft controllers, IEEE Internet Computing.
VERMESAN, O.; FRIESS, P. (2014) Internet of Things-From Research and Innovation to Market Deployment. River Publishers Denmark: p. 1-374, accessed in October 26th’ 2017 on <https://books.google.com.br/books?hl=pt-BR&lr=&id=rHYGZ0wxLP0C&oi=fnd&pg=PR1&dq=industry+4.0+and+smart+city&ots=NYCrqVsBDl&sig=1csZ4fAgRxGrmHxVrfLHRivcQZA#v=onepage&q&f=false>
ZHOU, K.; ZHOU, T. L. L. (2015) Industry 4.0: Towards Future Industrial Opportunities and Challenges. 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), p. 2147-2152.