*Periodicity.:*

**October - December 2017***e-ISSN......:*

**2236-269X**### Fuzzy E.O.Q model with constant demand and shortages: A fuzzy signomial geometric programming (FSGP) approach

#### Abstract

#### Keywords

#### References

APPADOO, S. S.; BECTOR, C. R.; BHATT, S. K. (2012) Fuzzy EOQ model using possibilistic approach, Journal of Advances in Management Research, v. 9 n. 1, p. 139-164.

BELLMAN, R. E.; ZADEH (1970) Decision making in a fuzzy environment, Management Science, v. 17, p. B141-B164.

BLAU, G.; WILDE, D. J. (1967) Second Order Characterization of Generalized Polynomial Programs, Princeton International Symp. Math. Programming.

CARLSSON, C.; FULLER, R. (2001) On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, n. 122, p. 315-326.

CARLSSON, C.; FULLER, R. (2002) Fuzzy Reasoning in Decision Making and Optimization, Physics-Verlag.

CHARNES, A.; COPPER, W. W.; GOLANY, B.; MASRERS, J. (1988) Optimal dwsine modification by geometric programming and constrained stochastic network models. International Journal of System Science, v. 19 p. 825-844.

CLARK, A. J. (1992) An informal survey of multy-echelon inventory theory, Naval Research Logistics Quarterly, n. 19, p. 621-650.

DUTTA, D.; KUMAR, P. (2012) Fuzzy inventory without shortages using trapezoidal fuzzy number with sensitivity analysis, IOSR Journal of Mathematics, v. 4, n. 3, p. 32-37.

DUTTA, D.; RAO, J. R.; TIWARY R. N. (1993) Effect of tolerance in fuzzy linear fractional programming, Fuzzy Sets and Systems, n. 55, p. 133-142.

HAMACHER, LEBERLING, H.; ZIMMERMANN, H. J. (1978) Sensitivity Analysis in fuzzy linear Programming Fuzzy Sets and Systems, n. 1, p. 269-281

HARRIS, FORD W. (1990) How Many Parts to Make at Once. Operations Research, v. 8, n. 6, p. 947.

ISLAM, S.; ROY, T. K. (2006) A fuzzy EPQ model with flexibility and reliability consideration and demand depended unit Production cost under a space constraint: A fuzzy geometric programming approach, Applied Mathematics and Computation, v. 176, n. 2, p. 531-544.

ISLAM, S.; ROY, T. K. (2010) Multi-Objective Geometric-Programming Problem and its Application. Yugoslav Journal of Operations Research, n. 20, p. 213-227.

KOTB A. M.; HLAA. A.; FERGANCY (2011) Multi-item EOQ model with both demand-depended unit costand varying Leadtime via Geometric Programming, Applied Mathematics, n. 2, p. 551-555.

KHUN, H. W.; TUCKER A. W. (1951) Non-linear programming, proceeding second Berkeley symposium Mathematical Statistic and probability (ed) NYMAN, J. University of California press, p. 481-492.

LIANG, Y.; ZHOU, F. (2011) A two warehouse inventory model for deteriorating items under conditionally permissible delay in Payment, Applied Mathematical Modeling, n. 35, p. 2221-2231.

LIU, S. T. (2006) Posynomial Geometric-Programming with interval exponents and co-efficients, Europian Journal of Operations Research, v. 168, n. 2, p. 345-353

MAITY, M. K. (2008) Fuzzy inventory model with two ware house under possibility measure in fuzzy goal, European Journal Operation Research, n. 188, p. 746-774

MANDAL, W. A.; ISLAM, S. (2016) Fuzzy Inventory Model for Deteriorating Items, with Time Depended Demand, Shortages, and Fully Backlogging, Pak.. j. stat. oper.res., v. XII, n. 1, p. 101-109.

MANDAL, W. A.; ISLAM, S. (2015) Fuzzy Inventory Model for Power Demand Pattern with Shortages, Inflation Under Permissible Delay in Payment, International Journal of Inventive Engineering and Sciences, v. 3, n. 8.

MANDAL, W. A.; ISLAM, S. (2015) Fuzzy Inventory Model for Weibull Deteriorating Items, with Time Depended Demand, Shortages, and Partially Backlogging, International Journal of Engineering and Advanced Technology, v. 4, n. 5.

MANDAL, W. A.; ISLAM, S. (2016) A Fuzzy E.O.Q Model with Cost of Interest, Time Depended Holding Cost, With-out Shortages under a Space Constraint: A Fuzzy Geometric Programming and Non-Linear Programming Approach. International Journal of Research on Social and Natural Sciences, v. I, n. 1, June, p. 134-147.

PASSY, U.; WILDE, D. J. (1967) Generalized Polynomial Optimization, SIAM Jour. Appli. Math., n. 15, p. 1344-1356.

PASSY, U.; WILDE, D. J. (1968) A Geometric Programming Algorithm for Solving Chemical Equilibrium Problems, SIAM Jour. Appli. Math., n. 16, p. 363-373.

ROY, T. K.; MAYTY, M. (1995) A fuzzy inventory model with constraints, Opsearch, v. 32, n. 4, p. 287-298.

ZADEH, L. A. (1965) Fuzzy sets, Information and Control, n. 8, p. 338-353.

ZIMMERMANN, H. J. (1985) Application of fuzzy set theory to mathematical programming, Information Science, n. 36, p. 29-58.

ZIMMERMANN, H. J. (1992) Methods and applications of Fuzzy Mathematical programming, In: YAGER, R. R.; ADEH, L. A. Z. (eds), An introduction to Fuzzy Logic Application in Intelligent Systems, p. 97-120, Kluwer publishers, Boston.

DOI: http://dx.doi.org/10.14807/ijmp.v8i4.640

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

Copyright (c) 2017 Wasim Akram Mandal, Sahidul Islam

This work is licensed under a Creative Commons Attribution 4.0 International License.

LIBRARIES BY | ||||