Periodicity.: January - June 2013
e-ISSN......: 2236-269X
Cover Image

Review of combining forecasts approaches

Aline Castello Branco Mancuso, Liane Werner

Abstract


The first review of the literature on the subject combination of forecasts was made in the twentieth century by Robert Clemen. After more than twenty years, several other papers have been published with new theories and applications, but no other similar review was performed. Faced with this placement, this paper aimed to review the literature on the approaches of combining forecast after the survey conducted by Clemen (1989), covering the various areas of knowledge. Thus, this paper presents the classification and analysis of 174 articles collected on the subject, describing their main characteristics. As main contributions, this paper offers: a summary of current literature on the topic; a classification of articles according to the approaches; a subdivision of items within each approach; analysis of classification and identification of the most common methods, new methods, and future research. Keywords: combining forecasts, review of the literature, forecasting.

Keywords


combining forecasts; review of the literature; forecasting

Full Text:

PDF ePUB HTML

References


AKSU C.; GUNTER, S. I. (1992). An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. International Journal of Forecasting, n. 8, p. 27-43.

ALADAG, C.; EGRIOGLU, E.; YOLCU, U. (2010). Forecast Combination by Using Artificial Neural Networks. Neural Processing Letters, n. 32, p. 269-276.

AMENDOLA, A.; STORTI G. (2008). A GMM procedure for combining volatility forecasts. Journal Computational Statistics & Data Analysis, n. 52, p. 3047-3060.

ARMSTRONG J. S. (1989). Combining forecasts: The end of the beginning or the beginning of the end? International Journal of Forecasting, n. 5, p. 585-588.

ARMSTRONG, J. S. (2001). Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic Publishers.

ARMSTRONG, J. S. (2006). Findings from evidence-based forecasting: Methods for reducing forecast error. International Journal of Forecasting, n. 22, p. 583-598.

ARMSTRONG, J. S. (2007). Significance tests harm progress in forecasting. International Journal of Forecasting, n. 23, p. 321-327.

AUSSEM, A.; MURTAGH, F. (1997). Combining Neural Network Forecasts on Wavelet-transformed Time Series. Connection Science, n. 9, p. 113-122.

BATCHELOR, R.; DUA, P. (1995). Forecaster Diversity and the Benefits of Combining Forecasts. Management Science, n. 41, p. 68-75.

BATES, J. M.; GRANGER, C. W. J. (1969). The Combining of Forecasts. Operational Research Quarterly, n. 20, p. 451-468.

BERG, J. E.; NELSON, F. D.; RIETZ, T. A. (2008). Prediction market accuracy in the long run. International Journal of Forecasting, n. 24, p. 285-300.

BEZERRA, A. C. N.; PEZZI, L. P.; KAYANO, M. T. (2008). Esquema Estatístico de Combinação e Correção de Previsões Climáticas – ECCOCLIM. Rev. Bras. Meteorologia, n. 23, p. 347-359.

BJORNLAND, H. C.; GERDRUP, K.; JORE, A. S.; SMITH, C.; THORSRUD, L. A. (2012). Does Forecast Combination Improve Norges Bank Inflation Forecast? Oxford Bulletin of Economics and Statistics, n. 74, p. 163-179.

BROWN, B. G.; MURPHY, A. H. (1996). Improving forecasting performance by combining forecasts: The example of road-surface temperature forecasts. Meteorological Applications, n. 3, p. 257-265.

CAI, Y.; STANDER, J.; DAVIES, N. (2012). A new Bayesian approach to quantile autoregressive time series model estimation and forecasting. Journal of Time Series Analysis, n. 33, p. 684-698.

CAIADO, J. (2010) Performance of Combined Double Seasonal Univariate Time Series Models for Forecasting Water Demand. Journal of Hydrologic Engineering, n. 15, p. 215-222.

CASAGRANDE, L. F.; HOSS, O. (2010) Métodos de Forecasting Conjugado com um Método Qualitativo e um Método com a Média das Previsões Quantitativas e Qualitativas. CAP – Accounting and Management, n. 4, p. 94-100.

CHAN, C. K.; KINGSMAN, B. G.; WONG, H. (1999). A comparison of unconstrained and constrained OLS for the combination of demand forecasts: A case study of the ordering and stocking of bank printed forms. Annals of Operations Research, n. 87, p. 129-140.

CHAN, C. K.; KINGSMAN, B. G.; WONG, H. (1999b). The value of combining forecasts in inventory management - a case study in banking. European Journal of Operational Research, n. 117, p. 199-210.

CHAN, C. K.; KINGSMAN, B. G.; WONG, H. (2003). Determining when to update the weights in combined forecasts for product demand--an application of the CUSUM technique. European Journal of Operational Research, n. 153, p. 757-768.

CHANDRASEKHARAN, R.; MORIARTY, M. M.; WRIGHT, G. P. (1994). Testing for unreliable estimators and insignificant forecasts in combined forecasts. Journal of Forecasting, n. 13, p. 611-624.

CHEN, K. Y. (2011). Combining linear and nonlinear model in forecasting tourism demand. Expert Systems with Applications: An International Journal, n. 38, p. 10368-10376.

CHO, V.; WÜTHRICH, B. (1999). Combining Forecasts from Multiple Textual Data Sources. Methodologies for Knowledge Discovery and Data Mining, n. 1574, p. 174-179.

CHRISTODOULOS, C.; MICHALAKELIS, C.; VAROUTAS, D. (2011). On the combination of exponential smoothing and diffusion forecasts: An application to broadband diffusion in the OECD area. Technological Forecasting and Social Change, n. 78, p. 163-170.

CLARK, T. E.; MCCRACKEN, M. W. (2009). Combining Forecasts from Nested Models†. Oxford Bulletin of Economics and Statistics, n. 71, p. 303-329.

CLEMEN, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, n. 5, p. 559-583.

CLEMEN, R. T.; MURPHY, A. H.; WINKLER, R. L. (1995). Screening probability forecasts: contrasts between choosing and combining. International Journal of Forecasting, n. 11, p. 133-145.

CLEMENTS, M. P.; HARVEY, D. I. (2011). Combining probability forecasts. International Journal of Forecasting, n. 27, p. 208-223.

COLLOPY, F.; ARMSTRONG, J. S. (1992). Rule-based forecasting: development and validation of an expert systems approach to combining time series extrapolations. Journal Management Science, n. 38, p. 1394-1414.

COSHALL, J. T. (2009). Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management, n. 30, p. 495-511.

COSTANTINI, M.; PAPPALARDO, C. (2010) A hierarchical procedure for the combination of forecasts. International Journal of Forecasting, n. 26, p. 725-743.

COSTANTINI, M.; KUNST, R. M. (2011). Combining forecasts based on multiple encompassing tests in a macroeconomic core system. Journal of Forecasting, n. 30, p. 579-596.

COX, L. A. Jr.; POPKEN, D. A. (2002). A hybrid system-identification method for forecasting telecommunications product demands. International Journal of Forecasting, n. 18, p. 647-671.

DOBLAS-REYES, F. J.; HAGEDORN, R.; PALMER, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting – II: Calibration and combination. Tellus A, n. 57, p. 234-252.

DONALDSON, R. G.; KAMSTRA, M. (1996). Forecast combining with neural networks. Journal of Forecasting, n. 15, p. 49-61.

DONALDSON, R. G.; KAMSTRA, M. (1999). Neural network forecast combining with interaction effects. Journal of the Franklin Institute, n. 336, p. 227-236.

DRECHSEL, K.; SCHEUFELE, R. (2012). The performance of short-term forecasts of the German economy before and during the 2008/2009 recession. International Journal of Forecasting, n. 28, p. 428–445.

DREGER, C.; SCHUMACHER, C. (2005). Out-of-sample Performance of Leading Indicators for the German Business Cycle: Single vs. Combined Forecasts. Journal of Business Cycle Measurement and Analysis, n. 2005, p. 71-87.

ELLIOTT, G.; TIMMERMANN, A. (2005). Optimal Forecast Combination Under Regime Switching. International Economic Review, n. 46, p. 1081-1102.

FAN, W. G.; DENG, F. (2007). Variable Weight Combining Forecasts Based on Forecasting Error. International Conference on Control and Automation, n. 5, p. 1610-1613.

FANG ,Y. (2003). Forecasting combination and encompassing tests. International Journal of Forecasting, n. 19, p. 87-94.

FARIA, A. E.; SOUZA, R. C. (1995). A re-evaluation of the quasi-bayes approach to the linear combination of forecasts. Journal of Forecasting, n. 14, p. 533-542.

FÉLIX, J. A.; RODRÍGUEZ, F. F. (2008). Improving moving average trading rules with boosting and statistical learning methods. Journal of Forecasting, n. 27, p. 433-449.

FISCHER, I.; HARVEY, N. (1999). Combining forecasts: What information do judges need to outperform the simple average? International Journal of Forecasting, n. 15, p. 227-246.

FRANSES, P. H. (2011). Averaging Model Forecasts and Expert Forecasts: Why Does It Work? Journal Interfaces, n. 41, p. 177-181.

FRANSES, P. H. (2011b). Model selection for forecast combination. Applied Economics, n. 43, p. 1721-1727.

FRANSES, P. H.; LEGERSTEE, R. (2011). Combining SKU - level sales forecasts from models and experts. Expert Systems with Applications, n. 38, p. 2365-2370.

FROMM, J.; FEI, H.; FIORDALISO, A. (1998). A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems. International Journal of Forecasting, n. 14, p. 367-379.

GARAND, L.; GRASSOTTI, C. (1995). Toward an objective analysis of rainfall rate combining observations and short-term forecast model estimates. Journal of Applied Meteorology, n. 34, p. 1962-77.

GARDNER, E. S. Jr. (1993). Forecasting the failure of component parts in computer systems: A case study. International Journal of Forecasting, n. 9, p. 245-253.

GARDNER, E. S. Jr. (1999). Note: Rule-Based Forecasting Vs. Damped-Trend Exponential Smoothing. Journal Management Science, n. 45, p. 1169-1176.

GMEZ, M. I.; GONZLEZ, E. R.; MELO, L. F. (2012). Forecasting Food Inflation in Developing Countries with Inflation Targeting Regimes. American Journal of Agricultural Economics, n. 94, p. 153-173.

GONG, K.; LIU, M.; FANG, Y.; ZHANG, X. (2011). A Hybrid Model of Rough Sets and Shannon Entropy for Building a Foreign Trade Forecasting System. Computational Sciences and Optimization, p. 7-11.

GOODWIN, P. (2000). Correct or combine? Mechanically integrating judgmental forecasts with statistical methods. International Journal of Forecasting, n. 16, p. 261-275.

GREEN, K. C.; ARMSTRONG, J. S. (2011). Role thinking: Standing in other people’s shoes to forecast decisions in conflicts. International Journal of Forecasting, n. 27, p. 69-80.

GREER, M. (2005). Combination forecasting for directional accuracy: An application to survey interest rate forecasts. Journal of Applied Statistics, n. 32, p. 607-615.

GUNTER, S. I. (1992). Nonnegativity restricted least squares combinations. International Journal of Forecasting, n. 8, p. 45-59.

GUNTER, S. I.; AKSU C. (1997). The usefulness of heuristic N(E)RLS algorithms for combining forecasts. Journal of Forecasting, n. 16, p. 439-462.

HARRIES, C.; YANIV, I.; HARVEY, N. (2004). Combining advice: the weight of a dissenting opinion in the consensus. Journal of Behavioral Decision Making, n. 17, p. 333-348.

HARVEY, N.; HARRIES, C. (2004). Effects of judges' forecasting on their later combination of forecasts for the same outcomes. International Journal of Forecasting, n. 20, p. 391-409.

HE, C.; XU, X. (2005). Combination of forecasts using self-organizing algorithms. Journal of Forecasting, n. 24, p. 269-278.

HE, Z.; ZHAO, W.; LIU, H. (2012). Comparing the performance of empirical black-box models for river flow forecasting in the Heihe River Basin, Northwestern China. Hydrological Processes (in press).

HIERNAUX, A. G. (2011). Forecasting linear dynamical systems using subspace methods. Journal of Time Series Analysis, n. 32, p. 462-468.

HOGARTH, R. M. (1989). On combining diagnostic ‘forecasts’: Thoughts and some evidence. International Journal of Forecasting, n. 5, p. 593-597.

HOLDEN, K.; THOMPSON, J. (1997). Combining forecasts, encompassing and the properties of UK macroeconomic forecasts. Applied Economics, n. 29, p. 1447-1458.

HOLLAUER, G.; ISSLER, J. V.; NOTINI, H. H. (2008). Prevendo o crescimento da produção industrial usando um número limitado de combinações de previsões. Economia Aplicada, n. 12, p. 177-198.

HOST, O.; LAHAV, O.; ABDALLA, F. B.; EITEL, K. (2007). Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses. Physical Review, n. D76, p. 113005.

HSIAO, C.; WAN, S. K. (2011). Comparison of forecasting methods with an application to predicting excess equity premium. Mathematics and Computers in Simulation, n. 81, p. 1235-1246.

HU, M. Y.; TSOUKALAS, C. (1999). Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates. Journal of International Financial Markets, n. 9, p. 407-422.

HYNDMAN, R. J.; AHMED, R. A.; ATHANASOPOULOS G.; SHANG HL. (2011). Optimal combination forecasts for hierarchical time series. Journal Computational Statistics & Data Analysis, n. 55, p. 2579-2589.

JEONG, D.; KIM, Y. (2009). Combining single-value stream flow forecasts – A review and guidelines for selecting techniques. Journal of Hydrology, n. 377, p. 284-299.

JIANG, M.; YUAN, X. (2007). Personal Credit Scoring Model of Non-linear Combining Forecast Based on GP. Third International Conference on Natural Computation, n. 4, p. 408-414.

JING-RONG, D. (2000). Research on the method of nonlinear combining forecasts based on fuzzy-neural systems. Third World Congress on Intelligent Control and Automation, n. 2, p. 899-903.

JING-RONG, D. (2002). A nonlinear combining forecast method based on fuzzy neural network. International Conference on Machine Learning and Cybernetics, n. 4, p. 2160-2164.

JING-RONG, D. (2007). Combining Stock Market Volatility Forecasts Using an EWMA Technique. International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), p. 5277-5280.

JING-RONG, D. (2008). Combining Stock Market Volatility Forecasts Using a Bayesian Technique. International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), p. 1-5.

JOHNSTON, F. R.; BOYLAN, J. E.; SHALE, E.; MEADOWS, M. (1999). A robust forecasting system, based on the combination of two simple moving averages. Journal of the Operational Research Society, n. 50, p. 1199-1204.

JONES, R. J. Jr. (2008). The state of presidential election forecasting: The 2004 experience. International Journal of Forecasting, n. 24, p. 310-321.

JORGENSEN, M. (2007). Forecasting of software development work effort: Evidence on expert judgement and formal models. International Journal of Forecasting, n. 23, p. 449-462.

JOSE, V. R. R.; WINKLER, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, n. 24, p. 163-169.

KAMSTRA, M.; KENNEDY, P. (1998). Combining qualitative forecasts using logit. International Journal of Forecasting, n. 14, p. 83-93.

KAMSTRA, M.; KENNEDY, P.; SUAN, T. K. (2001). Combining Bond Rating Forecasts Using Logit. Financial Review, n. 36, p. 75-96.

KIM, J. R. K. (2008). Combining forecasts using optimal combination weight and generalized autoregression†. Journal of Forecasting, n. 27, p. 419-432.

KLEIN, L. R.; PARK, J. Y. (1993). Economic forecasting at high-frequency intervals. Journal of Forecasting, n. 12, p. 301-319.

KLOPPER, E.; LANDMAN, W. (2004). A simple approach for combining seasonal forecasts for southern Africa. Meteorological Applications, n. 10, p. 319-327.

KOLASSA, S. (2011). Combining exponential smoothing forecasts using Akaike weights. International Journal of Forecasting, n. 27, p. 238-251.

LAM, K. F.; MUI, H. W.; YUEN, H. K. (2001). A note on minimizing absolute percentage error in combined forecasts. Computers and Operations Research, n. 28, p. 1141-1147.

LARRICK, R. P.; SOLL, J. B. (2006). Intuitions About Combining Opinions: Misappreciation of the Averaging Principle. Journal Management Science, n. 52, p. 111-127.

LEUNG, M. T.; DAOUK, H.; CHEN, A. (2001). Using investment portfolio return to combine forecasts: A multi objective approach. European Journal of Operational Research, n. 134, p. 84-102.

LIANG, K. Y.; LEE, J. C.; SHAO, K. S. H. (2006). On the Distribution of the Inverted Linear Compound of Dependent F-Variates and its Application to the Combination of Forecasts. Journal of Applied Statistics, n. 33, p. 961-973.

LIN, C. C.; TANG, Y. H.; SHYU, J. Z.; LI, Y. M. (2010) Combining forecasts for technology forecasting and decision making. Journal of Technology Management in China, n. 5, p. 69-83.

LIU, J.; KRENZ, D. C.; GALVEZ, A. F.; LUMEN, B. O.; MENEZES, L. M.; BUNN, D. W. (1998). The persistence of specification problems in the distribution of combined forecast errors. International Journal of Forecasting, n. 14, p. 415-426.

LOBO, G. J.; NAIR, R. D. (1990). Combining Judgmental and Statistical Forecasts: An Application to Earnings Forecasts. Decision Sciences, n. 21, p. 446-460.

LOBO, G. J. 1991. Alternative methods of combining security analysts' and statistical forecasts of annual corporate earnings. International Journal of Forecasting, n. 7, p. 57-63.

LUBECKE, T. H.; NAM, K. D.; MARKLAND, R. E.; KWOK, C. C. Y. (1998). Combining foreign exchange rate forecasts using neural networks. Global Finance Journal, n. 9, p. 5-27.

LUCIO, P. S.; SANTOS, L. A.; SILVA, F. D.; BALBINO, H. T.; FERREIRA, D. B.; SALVADOR, M. A. (2007). Combining stochastic forecasts of attributes based on the Standardised Precipitation Index transformation design. Geophysical Research Abstracts, n. 9, p. 10266.

MACDONALD, R.; MARSH, I. W. (1994). Combining exchange rate forecasts: What is the optimal consensus measure? Journal of Forecasting, n. 13, p. 313-332.

MAGALHAES, M. H.; BALLINI, R.; MOLCK, P.; GOMIDE, F. (2004). Combining forecasts for natural stream flow prediction. Annual Meeting of the Fuzzy Information, n. 1, p. 390-394.

MAHMOUD, E. (1989). Combining forecasts: Some managerial issues. International Journal of Forecasting, n. 5, p. 599-600.

MAINES, L. A. (1996). An experimental examination of subjective forecast combination. International Journal of Forecasting, n. 12, p. 1178-1195.

MAKRIDAKIS, S.; ANDERSON, A.; CARBONE, R.; FILDES, R.; HIBON, M.; LEWANDOSKI, R.; NEWTON, J.; PARZEN, E.; WINKLER, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, n. 1, p. 111-153.

MAKRIDAKIS, S.; CHATFIELD, C.; HIBON, M.; LAWRENCE, M.; MILLS, T.; ORD, K.; SIMMONS, L. F. (1993). The M2-Competition: a real-time judgmentally based forecasting study. International Journal of Forecasting, n. 9, p. 5-22.

MAKRIDAKIS, S.; HIBON, M. (2000). The M3-Competition: results, conclusions and implications. International Journal of Forecasting, n. 16, p. 451-476.

MARQUES, E. B. (2005). Combinação de Previsões de Índices de Preços. Dissertation (Master in Economy). Rio de Janeiro: Fundação Getúlio Vargas.

MARTINS, V. L. M. (2011). Comparação de combinação de previsões correlacionadas e não correlacionadas com as suas previsões individuais: um estudo com séries industriais. Dissertation (Master in Production Engineering). Porto Alegre: PPGEP/UFRGS.

MARTINS, V. L. M.; WERNER, L. (2012). Forecast combination in industrial series: A comparison between individual forecasts and its combinations with and without correlated errors. Expert Systems with Applications, n. 39, p. 11479-11486.

MCINTYRE, S. H.; ACHABAL, D. D.; MILLER, C. M. (1993). Applying case-based reasoning to forecasting retail sales. Journal of Retailing, n. 69, p. 372-398.

MCNEES, S. K. (1992). The uses and abuses of ‘consensus’ forecasts. Journal of Forecasting, n. 11, p. 703-710.

MEADE, N.; ISLAM, T. (1998). Technological Forecasting - Model Selection, Model Stability, and Combining Models. Management Science, n. 44, p. 1115-1130.

MENEZES, L. M.; BUNN, D. W. (1993). Diagnostic tracking and model specification in combined forecasts of U.K. inflation. Journal of Forecasting, n. 12, p. 559-572.

MENEZES, L. M.; BUNN, D. W.; TAYLOR, J. W. (2000). Review of guidelines for the use of combined forecasts. European Journal of Operational Research, n. 120, p. 190-204.

METZGER, S.; LATIF, M.; FRAEDRICH, K. (2004). Combining ENSO Forecasts: A Feasibility Study. Monthly Weather Review, n. 132, p. 456-72.

MILLER, C. M.; CLEMEN, R. T.; WINKLER, R. L. (1992). The effect of nonstationarity on combined forecasts. International Journal of Forecasting, n. 7, p. 515-529.

SHI, S. M.; XU, L. D.; LIU, B. (1999). Improving the accuracy of nonlinear combined forecasting using neural networks. Expert Systems with Applications, n. 16, p. 49-54.

MORENO, B.; LÓPEZ, A. J. (2007). Combining economic forecasts through information measures. Applied Economics Letters, n. 14, p. 899-903.

MORENO, B.; LÓPEZ, A. J. (2011). Combining Economic Forecasts by Using a Maximum Entropy Econometric Approach. Journal of Forecasting (in press).

MOSTAGHIMI, M. (1996). Combining ranked mean value forecasts. European Journal of Operational Research, n. 94, p. 505-516.

MUKHOPADHYAY, S. K.; YUE, X.; ZHU, X. (2011). A Stackelberg model of pricing of complementary goods under information asymmetry. International Journal of Production Economics, n. 134, p. 424-433.

NEWBOLD, P.; GRANGER, C. W. J. (1974). Experience with Forecasting Univariate Time Series and the Combination of Forecasts. Journal of Royal Statistical Society (A), n. 137, p. 131-165.

NIELSEN, H. A.; NIELSEN, T. S.; MADSEN, H.; PINDADO, M. J. S. I.; MARTI, I. (2007). Optimal combination of wind power forecasts. Wind Energy, n. 10, p. 471-482.

ÖLLER, L. E. (1990). Forecasting the business cycle using survey data. International Journal of Forecasting, n. 6, p. 453-461.

PALM, F. C.; ZELLNER, A. (1992). To combine or not to combine? Issues of combining forecasts. Journal of Forecasting, n. 11, p. 687-701.

PERRY, C.; EULER, T. (1990). Cost-effective forecasting: Lessons my computer programs never taught me. Omega, n. 18, p. 241-246.

PALIWAL, M.; KUMAR, U. (2009). A Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, n. 36, p. 2-17.

PONCELA, P.; SENRA, E. (2006). A two factor model to combine US inflation forecasts. Applied Economics, n. 38, p. 2191-2197.

PONCELA, P.; RODRÍGUEZ, J.; MANGAS, R. S.; SENRA, E. (2011). Forecast combination through dimension reduction techniques. International Journal of Forecasting, n. 27, p. 224-237.

PREMINGER, A.; ZION, U. B.; WETTSTEIN, D. (2007). The extended switching regression model: allowing for multiple latent state variables. Journal of Forecasting, n. 26, p. 457-473.

RAMNATH, S.; ROCK, S.; SHANE, P. (2005). Value Line and I/B/E/S earnings forecasts. International Journal of Forecasting, n. 21, p. 185-198.

RANJAN, R.; GNEITING, T. (2010) Combining probability forecasts. Journal of the Royal Statistical Society, n. 72, p. 71-91.

RAPACH, D. E.; STRAUSS, J. K. (2008). Forecasting US employment growth using forecast combining methods. Journal of Forecasting, n. 27, p. 75-93.

RAPACH, D. E.; STRAUSS, J. K.; ZHOU, G. (2009). Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy. Review of Financial Studies, n. 23, p. 821-862.

RAPACH, D. E.; STRAUSS, J. K. (2012). Forecasting US state-level employment growth: An amalgamation approach. International Journal of Forecasting, n. 28, p. 315-327.

REEVES, G. R.; LAWRENCE, K. D. (1991). Combining forecasts given different types of objectives. European Journal of Operational Research, n. 51, p. 65-72.

RIDLEY, D. (1995). Combining Global Antithetic Forecasts. International Transactions in Operational Research, n. 2, p. 387-398.

RIDLEY, D. (1997). Optimal weights for combining antithetic forecasts. Computers and Industrial Engineering, n. 32, p. 371-381.

RIDLEY, D. (1999). Combining heteroscedastic antithetic forecasts. Computers and Industrial Engineering, n. 36, p. 227-230.

RIEDEL, S. (2009). Pooling for Combination of Multilevel Forecasts. Transactions on Knowledge and Data Engineering, n. 21, p. 1753-66.

RINGUEST, J. L.; TANG, K. (1989). An empirical comparison of five procedures for combining (or selecting) forecasts. Socio-Economic Planning Sciences, n. 23, p. 217-225.

SANCETTA, A. (2009). Recursive Forecast Combination for Dependent Heterogeneous Data. Econometric Theory, n. 26, p. 598-631.

SANDERS, N. R.; RITZMAN, L. P. (1995). Bringing judgment into combination forecasts. Journal of Operations Management, n. 13, p. 311-321.

SCHMITTLEIN, D. C.; KIM, J.; MORRISON, D. G. (1990). Combining forecasts: operational adjustments to theoretically optimal rules. Journal Management Science, n. 36, p. 1044-1056.

SHEN, C. H. (1996). Forecasting macroeconomic variables using data of different periodicities. International Journal of Forecasting, n. 12, p. 269-282.

SHEN, S.; LI, G.; SONG, H. (2008). An Assessment of Combining Tourism Demand Forecasts over Different Time Horizons. Journal of Travel Research, n. 47, p. 197-207.

SHI, S. Y. (2009). Study on the Technique and Error Analysis of Nonlinear Combining Forecasts Based Fuzzy System. International Conference on Electronic Computer Technology, p. 385-387.

SILVA, E. L.; MENEZES, E. M. (2001). Metodologia da Pesquisa e Elaboração de Dissertação. Laboratório de Ensino à Distância da UFSC / PPGEP: 3ª Ed.

SMITH, S. K. (1997). Further thoughts on simplicity and complexity in population projection models. International Journal of Forecasting, n. 13, p. 557-565.

SMITH, J.; WALLIS, K. F. (2009). A Simple Explanation of the Forecast Combination Puzzle. Oxford Bulletin of Economics and Statistics, n.71, p. 331-355.

SPANN, M.; SKIERA, B. (2009). Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters. Journal of Forecasting, n. 28, p. 55-72.

SPIRO, P. S. (1989). Improving a group forecast by removing the conservative bias in its components. International Journal of Forecasting, n. 5, p. 127-131.

STATHOPOULOS, A.; DIMITRIOU, L.; TSEKERIS, T. (2008). Fuzzy Modeling Approach for Combined Forecasting of Urban Traffic Flow. Computer-Aided Civil and Infrastructure Engineering, n. 23, p. 521-535.

STRIJBOSCH, L. W. G.; HEUTS, R. M. J.; VAN DER SCHOOT, E. H. M. (2000). A combined forecast - inventory control procedure for spare parts. Journal of the Operational Research Society, n. 51, p. 1184-1192.

SUMI, S. M.; ZAMAN, F.; HIROSE, H. (2011). A novel hybrid forecast model with weighted forecast combination with application to daily rainfall forecast of Fukuoka city. ACIIDS’11 Proceedings of the Third international conference on Intelligent information and database systems, p. 262-271.

SZUPILUK, R.; WOJEWNIK, P.; ZABKOWSKI, T. (2006). Combining forecasts with blind signal separation methods in electric load prediction framework. 24th IASTED international conference on Artificial intelligence and applications table of contents, p. 439-444.

TANG, X.; ZHOU, Z.; SHI, Y. (2002). The error bounds of combined forecasting. Mathematical and Computer Modeling, n. 36, p. 997-1005.

TANG, X.; ZHOU, Z.; SHI, Y. (2003). The variable weighted functions of combined forecasting. Computers and Mathematics with Applications, n. 45, p. 723-730.

TAYLOR, J. W.; BUNN, D. W. (1999). Investigating Improvements in the Accuracy of Prediction Intervals for Combinations of Forecasts: A Simulation Study. International Journal of Forecasting, n. 15, p. 325-339.

TAYLOR, J. W.; MAJITHIA, S.; JAMES, W. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, n. 51, p. 72-82.

TERREGROSSA, S. J. (2005). On the efficacy of constraints on the linear combination forecast model. Applied Economics Letters, n. 12, p. 19-28.

TERUI, N.; DIJK, H. K. (2002). Combined forecasts from linear and nonlinear time series models. International Journal of Forecasting, n. 18, p. 421-438.

THEODOSIOU, M. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, n. 27, p. 1178-1195.

THOMAS, R. J. (1996). Estimating demand for services: issues in combining sales forecasts. Journal of Retailing and Consumer Services, n. 3, p. 241-250.

TIBILETTI, L. (1994). A non-linear combination of experts' forecasts: A Bayesian approach. Journal of Forecasting, n. 13, p. 21-27.

TSANGARI, H. (2007). An Alternative Methodology for Combining Different Forecasting Models. Journal of Applied Statistics, n. 34, p. 403-421(19).

VOLKOV, V. Y.; GLADKOV, Y. U. M. (1995). Reconfigurable combined forecasts in a non-stationary inflationary environment. Journal of Forecasting, n. 14, p. 395-403.

VOKURKA, R. J.; FLORES, B. E.; PEARCE, S. L. (1996). Automatic feature identification and graphical support in rule-based forecasting: a comparison. International Journal of Forecasting, n. 12, p. 495-512.

WALLIS, K. (2011). Combining forecasts - forty years later. Applied Financial Economics, n. 21, p. 33-41.

WALZ, D. B.; WALZ, D. P. (1989). Combining Forecasts: Multiple Regression versus a Bayesian Approach†. Decision Sciences, n. 20, p. 77-89.

WANG, M. Y.; LAN, W. T. (2007). Combined forecast process: Combining scenario analysis with the technological substitution model. Technological Forecasting and Social Change, n. 74, p. 357-378.

WANG, W.; NIE, S. (2008). The Performance Evaluation and Choice of Combining Forecast Method. Second International Symposium on Intelligent Information Technology Application, n. 1, p. 838-842.

WANG, W.; NIE, S. (2008b). The Performance of Several Combining Forecasts for Stock Index. International Seminar on Future Information Technology and Management Engineering, p. 450-455.

WANG, G.; KULKARNI, S. R.; POOR, H. V.; OSHERSON, D. N. (2011). Aggregating Large Sets of Probabilistic Forecasts by Weighted Coherent Adjustment. Journal Decision Analysis, n. 8, p. 128-144.

WEBBY, R.; O’CONNOR, M. (1996). Judgment and Statistical Time Series Forecasting: a Review of the Literature. International Journal of Forecasting, n. 12, p. 91-118.

WENZEL, T. (2001). Hits-and-misses for the evaluation and combination of forecasts. Journal of Applied Statistics, n. 28, p. 759-773.

WERNER, L. (2005). Um modelo composto para realizar previsão de demanda através da integração da combinação de previsões e do ajuste baseado na opinião. Thesi (PhD in Production Engineering). Porto Alegre: UFRGS.

WERNER, L.; RIBEIRO, J. L. D. (2006). Modelo Composto para prever demanda através da integração de previsões. Produção (São Paulo), n. 16, p. 493-509.

WHITE, E. M.; DATTERO, R.; FLORES, B. (1992). Combining vector forecasts to predict thoroughbred horse race outcomes. International Journal of Forecasting, n. 8, p. 595-611.

WICHARD, J. D. (2011). Forecasting the NN5 time series with hybrid models. International Journal of Forecasting, n. 27, p. 700-707.

WINKLER, R. L. (1989). Combining forecasts: A philosophical basis and some current issues. International Journal of Forecasting, n. 5, p. 605-609.

WINKLER, R. L.; CLEMEN, R. T. (1992). Sensitivity of weights in combining forecasts. Operations Research, n. 40, p. 609-614.

WINKLER, R. L.; CLEMEN, R. T. (2004). Multiple Experts vs. Multiple Methods: Combining Correlation Assessments. Journal Decision Analysis, n. 1, p. 167-176.

WONG, K. K. F.; SONG, H.; WITT, S. F.; WU, D. C. (2007). Tourism forecasting: To combine or not to combine? Tourism Management, n. 28, p. 1068-1078.

XIONG, L.; SHAMSELDIN, A. Y.; O’CONNOR, K. M. (2001). A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. Journal of Hydrology, n. 25, p. 196-217.

YUFANG, C.; MINGHUI, J. (2007). Combining Forecasts of Personal Credit Scoring Based on RBF Neural Network. Control Conference (Chinese), p. 250-252.

ZHANG, L.; ZHAO, W.; HE, Z.; LIU, H. (2009). Application of the Takagi - Sugeno fuzzy system for combination forecasting of river flow in semiarid mountain regions. Hydrological Processes, n. 23, p. 1430-1436.

ZHANG, X.; LEI, Y.; CAO, Q. V. (2010). Compatibility of Stand Basal Area Predictions Based on Forecast Combination. Forest Science, n. 56, p. 552-557.

ZHOU, Z.; SHI, Y.; HAO, X. (1999). An MC2 Linear Programming Approach to Combined Forecasting. Mathematical and Computer Modeling, n. 29, p. 97-103.

ZHU, X.; MUKHOPADHYAY, S. K.; YUE, X. (2011). Role of forecast effort on supply chain profitability under various information sharing scenarios. International Journal of Production Economics, n. 129, p. 284-291.

ZOU, H.; YANG, Y. (2004). Combining time series models for forecasting. Journal of Forecasting, n. 20, p. 69-84.




DOI: http://dx.doi.org/10.14807/ijmp.v4i1.59

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c)



LIBRARIES BY

Logo Gaudeamus

Logo INDIANA

Logo CHENG KUNG

Logo UTEP

Logo MOBIUS

Logo UNIVEM

Logo Kennedy

Logo Columbia

Logo UCS

Logo MSG/UFF

Logo OPT

Logo Biblioteca Professor Milton Cabral Moreira

Logo UFL

Logo ULRICHSWEB

Logo UNISA