Automation benefits in the formation process of lead-acid batteries

Main Article Content

Márcio Duarte Zanconato
Beatriz Braido de Rossi
Herbert Duchatsch Johansen
Márcia Rodrigues de Morais Chaves
Beatriz Antoniassi


In this work, the automated formation process of lead-acid battery and its industrial positive impact on the battery efficiency are evaluated toward the manual process. The problems in the lead-acid batteries formation are related to the α-PbO2 and β-PbO2 production during the first electric charge. The lead-acid battery formation problems frequently occur when electrical current sources with manual control are used. The main drawback of the manual method is addressed to the electric current interruptions between the plates during the battery charging. Thus, the lead oxides phases in the plates were used as parameter to correlate the chemical composition to the failure on the batteries formation process. X-ray powder diffraction technique was used to identify the lead phases. The results showed that the use of automated electric power supply has higher efficiency than the manual one. The benefits of automation include the increased productivity, reduction on the production costs, and lower consumption of natural resources.


Download data is not yet available.


Metrics Loading ...

Article Details



ABNT (2012) Associação Brasileira de Normas Técnicas. NBR 15941:2012 - Baterias chumbo-ácido para motocicletas, triciclos e quadriciclos - Especificação e métodos de ensaios. Rio de Janeiro, 2012.

ABNT (2008) Associação Brasileira de Normas Técnicas. NBR ISO 9001:2008 - Sistema de Gestão da Qualidade: Requisistos. Rio de Janeiro, 2008.

ABNT (2004) Associação Brasileira de Normas Técnicas. NBR ISO 14001:2004 - Sistema da Gestão Ambiental: Requisistos com orientações para uso. Rio de Janeiro, 2004.

Bode H. (1977) Lead Acid Batteries, Wiley-Interscience, New York, 1977.

BRAZIL (2015) INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Portaria n.º 199, de 16 de abril de 2015. Requisitos de Avaliação da Conformidade para Baterias Chumbo-Ácido para Veículos Automotivos.

BRAZIL (2012) INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Portaria n.º 239, de 09 de maio de 2012. Regulamento Técnico da Qualidade para Baterias chumbo-ácido para veículos automotores.

BRAZIL (2011) INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Portaria n.º 482, de 19 de dezembro de 2011. Regulamentação de Baterias chumbo-ácido para veículos automotores.

BRAZIL (2011) INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Portaria n.º 301, de 21 de julho de 2011. Requisitos de Avaliação da Conformidade para Componentes Automotivos.

CHEN, H. et al. (1996) Study and application of several-step tank formation of lead/acid battery plates. Journal Power Sources, v. 59, n. 1-2, p. 59-62.

CHO, J. et al. (2015) Commercial and research battery techonologies for electrical energy storage applications. Progress in Energy and Combustion Science, n. 48, p. 84-101.

CPFL (2015) Companhia Paulista de Força e Luz. Disponível em:

FERG, E. et al. (2013) The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries. Journal of Power Sources, n. 226, p. 299-305.

GONZÁLEZ, I. et al. (2012) Estimation of the state-of-charge of gel lead-acid batteries and application to the control of a stand-alone wind-solar test-bed with hydrogen support. International Journal of Hydrogen Energy, v. 37, n. 15, p. 11090-11103.

GOU, J. et al. (2014) Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications. Journal of Power Sources, n. 263, p. 186-194.

GROSS, M. (2012) Looking for alternative energy sources. Current Biology, v. 22, n. 4, p. 103-106.

GRUGEON-DEWAELE, S. et al. (1997) Soaking and formation of tetrabasic lead sulfate. Journal Power Sources, n. 64, p. 71–80.

GUERRA, A. et al. (2015) Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, n. 103, p. 197-210.

HIREMATH, M. et al. (2015) Comparative life cycle assessment of battery storage systemsfor stationary applications. Environmental science & technology, v. 49, n. 8, p. 4825-4833.

JANNATI, M. et al. (2016) A significant reduction in the costs of battery energy storagesystems by use of smart parking lots in the power fluctuation smoothing process of the wind farms. Renewable Energy, v. 87, n. 1, p. 1-14.

JAUNCEY, G. E. M. (1945) The Birth and Early Infancy of X-Rays. American Journal of Physics, n. 13, p. 362-379.

JENKINS, R. (1986) JCPDS – International Centre for Difraction Data – Sample Preparation Methods in X-Ray Powder Diffractrion. Powder Diffraction, v. 1, n. 2, p. 51-63.

KEAR, G. et al. (2012) Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research, v. 36, n. 11, p. 1105-1120.

KIESSLING, R. (1992) Lead acid battery formation techniques. Digatron Firing Circuits, Digatron.

KONOVALOV, V. et al. (2015) Potential of renewable and alternative energy sources. IOP Conf. Series: Earth and Environmental Science, n. 27, p. 012-068. doi:10.1088/1755-1315/27/1/012068.

LAM, L. T. et al. (1994) Aspects of lead/acid battery manufacture and performance. Journal of Power Sources, n. 48, p. 257-268.

LAWRENCE, E. L. et al. (2002) Effect of soaking time on the positive active material and performance of the valve regulated lead acid battery. Journal of Power Sources, n. 110, p. 125-132.

MACHADO, M. (2015) Economizar energia elétrica é mais importante que economizar água. Ama Natureza, 2015. Disponível em: Acesso em: 16 nov. 2015.

MACLEAN, H. L.; LAVE, L. B. (2003) Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science, n. 29, p. 1-69.

MANES, G. I. (1956) The Discovery of X-Ray. Isis, n. 47, p. 236-238.

MCKENNA, E. (2013) Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems. Applied Energy, n. 104, p. 239-249.

MCKEON, B. (2014) Advanced Lead–Acid Batteries and the Development of Grid-cale Energy Storage Systems. Proceedings of the IEEE, v. 102, n. 6, p. 951-963.

MATTESON, S.; WILLIAMS, E. (2015) Residual learning rates in lead-acid batteries: Effects on emerging technologies. Energy Policy, n. 85, p. 71-79.

PALMER, R. V. (2008) Estudo da sulfatação durante a formação de placas positivas empastadas de bateria de chumbo-ácido. 108 f. Dissertação (Mestrado em Engenharia e Ciências dos Materiais) – Universidade Federal do Paraná, Curitiba, 2008.

PAVLOV, D. (2011) Lead-acid batteries: science and technology. Amsterdam: Elsevier.

PAVLOV, D. et al. (2003) Strap grid tubular plate-a new positive plate for lead-acid batteries: Processes of residual sulphation of the positive plate. Journal of Power Sources, v. 113, n. 2, p. 255-270.

PAVLOV D. (1084) in: MACNICOL, B. D.; RAND, D. A. J. (Eds). Power Sources for Electric Vehicles. Elsevier, Amsterdam, p. 328.

PAVLOV, D. et al. (1972) Mechanism of the Processes of Formation of Lead‐Acid Battery Positive Plates. Journal of the Electrochemical Society, v. 119, n. 1, p. 8-19.

PITATOWICZ, G. et al. (2015) A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples. Journal of Power Sources, n. 296, p. 365-376.

PROUT L. (1993) Aspects of lead/acid battery technology 4. Plate formation. Journal Power Sources, v. 41, n. 1-2, p. 195-219.

RADUCAN, E.; MORARU, L. (2011) Energy Storage Systems. Journal of Science and Arts, v. 14, n. 1, p. 103-108.

RAND, D. A. J. et al. (2004) Valve-regulated lead-acid batteries. Amsterdam; Boston: Elsevier.

SAUER, D. U.; WENZ, H. (2008) Comparison of different approaches for lifetime prediction of electrochemical systems-Using lead-acid batteries as example. Journal of Power Sources, n. 176, p. 534–546.

SOLOVEICHIK, L. G. (2014) Electrochemistry: Metal-free energy storage. Nature, n. 505, p. 163-165.

SUBERU, Y. et al. (2014) Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, n. 35, p. 499-514.

TAN, Z. et al. (2016) Outage Avoidance and Amelioration Using Battery Energy Storage Systems. IEEE Transactions on Industry Applications, v. 52, n. 1, p. 5-10.

UGURLU, A.; OZTUNA, S. (2015) A comparative analysis study of alternative energy sources for automobiles. International Journal of Hydrogen Energy, v. 40, n. 34, p. 11178-1188.

WATSON, E. C. (1945) The Discovery of X-Rays. American Journal of Physics, n. 13, p. 281-291.

ZENG, Y. et al. (2015) Investigation of lead dendrite growth in the formation of valve-regulated lead-acid batteries for electric bicycle applications. Journal of Power Sources, n. 286, p. 182-192.

ZHOU, Z. et al. (2013) A review of energy storage technologies for marine currentenergy systems. Renewable and Sustainable Energy Reviews, n. 18, p. 390-400.