Principal components in multivariate control charts applied to data instrumentation of DAMS

Main Article Content

Emerson Lazzarotto
Liliana Madalena Gramani
Anselmo Chaves Neto
Luiz Albino Teixeira Junior

Abstract

Hydroelectric plants are monitored by a high number of instruments that assess various quality characteristics of interest that have an inherent variability. The readings of these instruments generate time series of data on many occasions have correlation. Each project of a dam plant has characteristics that make it unique. Faced with the need to establish statistical control limits for the instrumentation data, this article makes an approach to multivariate statistical analysis and proposes a model that uses principal components control charts and statistical and to explain variability and establish a method of monitoring to control future observations. An application for section E of the Itaipu hydroelectric plant is performed to validate the model. The results show that the method used is appropriate and can help identify the type of outliers, reducing false alarms and reveal instruments that have higher contribution to the variability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Articles
Author Biographies

Emerson Lazzarotto, Universidade Estadual do Oeste do Paraná - UNIOESTE

Centro de Engenharias e Ciências Exatas

Campus de Foz do Iguaçu

Liliana Madalena Gramani, Universidade Federal do Paraná

Departamento de Matemática

Anselmo Chaves Neto, Universidade Federal do Paraná

Departamento de Estatistica

Luiz Albino Teixeira Junior, Universidade Federal da Integração Latino Americana - UNILA

ILATIT

References

BERSIMIS, S.; PSARAKIS, S.; PANARETOS, J. (2007) Multivariate statistical process control charts: an overview, Quality and Reliability engineering international, v. 23, p. 517-543, doi:10.1002/qre.829.

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C. (2008) Time-series analysis - forecasting and control, 4ª ed., Hoboken, New Jersey: John Wiley & Sons, Inc.

CHENG, L.; ZHENG, D. (2013) Two online dam safety monitoring models based on the process of extracting environmental effect, Advances in Engineering Software, v. 57,p. 48-56, doi:10.1016/j.advengsoft.2012.11.015.

CHOU, Y. M.; MASON, R. L.; YOUNG, J. C. (1999) Power comparisons for a Hotelling's T2 statistic, Commun. Statist. Simulation Comput., v. 28, p. 1031-1050, doi:10.1080/03610919908813591.

GAZETA DO POVO (2014) Gazeta do Povo, 08 Maio, [Online], Available: HYPERLINK www.gazetadopovo.com.br/economia/especial-itaipu-30-anos/conteudo.phtml?tl=1&id=1466225&tit=Gigante-pela-propria-natureza [08 Maio 2014].

GLOBO (2014) G1 Globo, [Online], Available: HYPERLINK www.g1.globo.com/pr/oeste-sudoeste/noticia/2014/05/seria-inimaginavel-o-paraguai-e-o-brasil-sem-itaipu-diz-diretor-geral.html [08 maio 2014].

GU, C. S.; ZHAO, E. F.; JIN, Y.; SU, H. Z. (2011) Singular value diagnosis in dam safety monitoring effect values, Sciencie China Technological Sciences, v. 54, n. 5, May, p. 1169-1176, doi 10.1007/s11431-011-4339-7.

HOLMES, D. S.; MERGEN, A. E. (1993) Improving the performance of the T2 control chart, Quality Engineering, v. 5, n. 4, March, p. 619-625, DOI:10.1080/08982119308919004.

HOTELLING, H. (1947) Multivariate quality control, Techniques of statistical analysis, p. 111-184.

ITAIPU BINACIONAL (1999) Estudos para a reavaliação dos valores de controle para a instrumentação civil das estruturas e fundações (2660.50.15402.P), Foz do Iguaçu.

ITAIPU BINACIONAL (1999) Estudos para a reavaliação dos valores limites para a instrumentação civil das estruturas e fundações (2662.50.15401-P), Foz do Iguaçu.

JACKSON, J. E. (1991) A user's guide to principal components, New York: John Wiley & Sons, Inc.

JOHNSON, R. A.; WICHERN, D. W. (2007) Applied Multivariate Statistical Analysis, 6th. ed., Upper Saddle River - NJ: Pearson Prentice Hall.

JORNAL INTERNO DE ITAIPU (2014) JIE, 08 maio, [Online], Available: HYPERLINK jie.itaipu.gov.br/index.php?secao=noticias_itaipu&q=node/6&pagina=4 [08 maio 2014].

KOURTI, T. (2005) Application of latent variable methods to process control and multivariate statistical process control in industry, International Journal of adaptive control and signal processing, v. 19, p. 213-246, doi: 10.1002/acs.859.

KRUGER, U.; XIE, L. (2012) Statistical monitoring of complex multivariate process with applications in industrial process control, Chichester: John Wiley & Sons.

LOH, C. H.; CHEN, C. H.; HSU, T. Y. (2011) Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam, Structural Health Monitoring, v. 10, n. 6, November, p. 587-601, doi: 10.1177/1475921710395807.

MASON, R. L.; YOUNG, J. C. (2002) Multivariate statistical process control with industrial applications, Philadelphia - Pennsylvania: ASA SIAM - American statistical Association - Society for industrial and applied mathematics.

MINGOTI, S. A. (2005) Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada, Belo Horizonte: UFMG.

MONTGOMERY, D. C. (2013) Introdução ao Controle Estatístico de Qualidade, 4th edition, Rio de Janeiro: LTC.

MUDHOLKAR, G. S.; JACKSON, J. E. (1979) Control procedures for residual associated with principal components analysis., Technometrics, v. 21, n.3, August, p. 341-349.

MUJICA, L. E.; RODELLAR, J.; FERNÁNDEZ, A.; GUEMES, A. (2011) Q-statistic and T2 statistic PCA-based measures for damage assessment in structures, Structural Health Monitoring, v. 10, n. 5, September, p. 539-553, doi: 10.1177/1475921710388972.

NEDUSHAN, B. A. (2002) Multivariate statistical analysis of monitoring data for concrete dams, Montreal: PhD Thesis, McGill University - Department of Civil Engineering and Apllied Mechanics.

ROSSO, J. A.; FIORINI, A. S.; PORTO, E. C.; SILVEIRA, J. F. (1995) Barragem de Itaipu - Lições aprendidas com o comportamento térmico das estruturas tipo gravidade aliviada e contraforte, XXII Seminário Nacional de Grandes Barragens, São Paulo.

RYAN, T. P. (2011) Statistical Methods for Quality Improvement, John Wiley & Sons.

USACE, UNITED STATES ARMY CORPS OF ENGINEERS (1995) Enginnering and Design - Instrumentation of Embankment Dams and Levees, Washington, DC.

XXIII INTERNATIONAL COMITEE OF LARGE DAMS (2009) Hydropower current developments - Question 88, Dams and Hydropower, Brasília, 6-8.

XXIII INTERNATIONAL COMITEE OF LARGE DAMS (2009) Question 90, Upgrading of existing dam, Brasília, 7.

YU, H.; WU, Z. R.; BAO, T. F.;ZHANG, L. (2010) Multivariate analysis in dam monitoring data with PCA, Sciencie China Technological Sciences, v. 53, n. 4, April, p. 1088-1097, doi: 10.1007/s11431-010-0060-1.