Effect of strain hardening on fatigue crack closure in aluminum alloy under constant amplitude with single overload
Main Article Content
Abstract
In this study effect of strain hardening on crack closure has been examined with the help of experiments and finite element method on the side edge notched specimen of five different Aluminum alloy (3003 Al, 5052 Al, 6061 T6, 6063 T6, 6351) in mode I under constant amplitude fatigue loading with single overload using Abaqus® 6.10 which is very well accepted FEM application in research. Extended Finite Element Method Module has been used to determine effective stress intensity factor at the crack tip while propagation takes place. FEM results have given good agreement with experimental results. Regression analysis has also been done with SPSS® 16 and dependency of strain hardening coefficient on crack closure has analyzed. A generalized empirical formula has been developed based on strain hardening to calculate effective stress intensity range ratio and a modified Paris law has also been formulated for these aluminum alloy.
Downloads
Article Details
1. Proposal of Policy for Free Access Periodics
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 that allows the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in an institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
Proposal of Policy for Periodic that offer Postponed Free Access
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 [SPECIFY TIME HERE] after the publication, allowing the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
d. They allow some kind of open dissemination. Authors can disseminate their articles in open access, but with specific conditions imposed by the editor that are related to:
Version of the article that can be deposited in the repository:
Pre-print: before being reviewed by pairs.
Post-print: once reviewed by pairs, which can be:
The version of the author that has been accepted for publication.
The editor's version, that is, the article published in the magazine.
At which point the article can be made accessible in an open manner: before it is published in the magazine, immediately afterwards or if a period of seizure is required, which can range from six months to several years.
Where to leave open: on the author's personal web page, only departmental websites, the repository of the institution, the file of the research funding agency, among others.
References
ASTM (1967) Recommended Practice for Plane Strain Fracture Toughness Testing of High strength Metallic Materials Using a Fatigue Cracked Bend Specimen, TRP prepared by ASTM committee E-24.
ASTM (1976) Standard Definition of terms Relating to Fatigue Testing & Statistical Analysis of Data, ASTM STP, n. 595, p 61-77.
BROEK, D. (1982) Elementary Engg. Fracture Mechanics, Martinus Nijhoff Publishers, London, 1982.
ELBER, W. (1970) Fatigue Crack Closure-Under Cyclic Tension, Engg. Fracture Mechanics, n. 2, p. 37-45.
ELBER, W. (1971) The Significance of Fatigue Crack Closure, ASTM, n. 486, p. 230-242.
FOREMAN, R. G.; MEARNEY, V. E.; ENGLE, R. M. (1967) Numerical Analysis of Crack Propagation in Cyclic Loaded Structures, J. I. Basic Engg., Trans. ASME, n. 89, p. 454.
KUMAR, R.; GARG, S. B. L. (1988a) Effect of Stress Ratio on Effective Stress Ratio &Crack Growth in 6061-T6 Aluminium Alloy, Int. J., Pres. Ves. and piping.
KUMAR, R.; GARG, S. B. L. (1988) Study of Crack Closure Under Constant Amplitude Loading for 6063-T6 Aluminium Alloy, Int. J. Press. Ves.and piping.
NICCOLLS, E. H. (1976) A Co-relation for Fatigue Crack Growth Rate, ScriptaMetall, n. 10, p. 295-298.
OSGOOD, C. C. (1982) Fatigue Design Cranbury, New Jersey, U.S.A., Pergamon Press.
PANDEY, A. K. (1988) Effect of Load Parameters on Crack Growth Rate & Fatigue Life, M.E. thesis, Allahabad.
PARIS, P. C.; ERDOGAN, F. (1963) A Critical Analysis of Crack Propagation Laws, Trans. ASME J. Basic Engg. n. 55, p. 528-534.
PEARSON, S. (1972) Effect of Mean Stress in Aluminum Alloy in High & low Fracture Toughness, Engg. Fracture Mechanics, n. 4, p. 9-24.
VIKRAM, N.; AGRAWAL, S.; KUMAR, R. (2014) Effect of Strain Hardening on Fatigue Crack Growth in5052 Al Alloy for Constant Amplitude Loading, SYLWAN., v. 158, n. 6, p. 110-124.
VIKRAM, N.; KUMAR, R. (2013) Review on Fatigue Crack Growth and Finite Element Method. IJSER, v. 4 n. 4, p. 833-842.
VIKRAM, N.; KUMAR, R. (2015) Effect of Strain Hardening On Fatigue Crack Closure In Aluminum Alloy, Int. J. Engg. Res. & Sci. & Tech, v. 4, n. 3.
WALKER, K. (1970) The Effect of Stress Ratio During Crack Propagation & Fatigue for 2024-T3 and 7075-T6 aluminium, ASTM STP, n. 462, p. 1-14.
ZHENG, X. (1983) Fatigue Crack Propagation in Steels, Engg. Fracture Mechanics, n. 18, p. 965-973.