Periodicity.: July - September 2015
e-ISSN......: 2236-269X
Cover Image

Kinematics at the Main Mechanism of a Railbound Forging Manipulator

Florian Ion Tiberiu Petrescu, Relly Victoria Virgil Petrescu

Abstract


Heavy payload forging manipulators are mainly characterized by large load output and large capacitive load input. The relationship between outputs and inputs will greatly influence the control and the reliability. Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we analyze the general kinematics of the main mechanism from a such manipulator. Kinematic scheme shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed. An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed. These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators.


Keywords


mechatronics, robotics, heavypayload forging manipulators, railbound forging manipulator, kinematics

Full Text:

PDF HTML

References


GAO, F.; GUO, W. Z. (2009) Coordinated kinematic modeling for motion planning of heavy-duty manipulators in an integrated open-die forging center, Journal of Engineering Manufacture, v. 223, n. 10, p. 1299-1313.

GAO, F.; GUO, W. Z.; SONG, Q. Y.; DU, F. S. (2010) Current Development of Heavy-duty Manufacturing Equipment, Journal of Mechanical Engineering, v. 46, n. 19, 2010, p. 92-107.

GE, H.; GAO, F. (2012) Type Design for Heavy-payload Forging Manipulators, Chinese Journal of Mechanical Engineering, v. 25, n. 2, p. 197-205.

LI, G.; LIU, D. S. (2010) Dynamic Behavior of the Forging Manipulator under Large Amplitude Compliance Motion, Journal of Mechanical Engineering, v. 46, n. 11, p. 21-28.

PETRESCU, F. I.; PETRESCU, R. V. (2013) Cinematics of the 3R Dyad, in journal Engevista, v. 15, n. 2, p. 118-124, August, ISSN 1415-7314. Available from:

http://www.uff.br/engevista/seer/index.php/engevista/article/view/376.

PETRESCU, F. I.; PETRESCU, R. V. (2012) Kinematics of the Planar Quadrilateral Mechanism, in journal Engevista, v. 14, n. 3, p. 345-348, December, ISSN 1415-7314. Available from:

http://www.uff.br/engevista/seer/index.php/engevista/article/view/377.

PETERSCU, F. I. ; PETERSCU, R. V. (2012) Mecatronica – Sisteme Seriale si Paralele, Create Space publisher, USA, March, ISBN 978-1-4750-6613-5, 128 pages, Romanian edition.

PETRESCU, F. I.; PETERSCU, R. V (2011) Mechanical Systems, Serial and Parallel – Course (in romanian), LULU Publisher, London, UK, February, 124 pages, ISBN 978-1-4466-0039-9, Romanian edition.

PETRESCU, F. I.; GRECU, B.; COMANESCU, A.; PETRESCU, R. V. (2009) Some Mechanical Design Elements. In the 3rd International Conference on Computational Mechanics and Virtual Engineering, COMEC 2009, Braşov, October, ISBN 978-973-598-572-1, Edit. UTB, p. 520-525.

PETRESCU, F. I. (2014) Sisteme mecatronice seriale, paralele și mixte. Create Space publisher, USA, February, ISBN 978-1-4959-2381-4, 224 pages, Romanian edition.

ZHAO, K.; WANG, H.; CHEN, G. L.; LIN, Z. Q.; HE, Y. B. (2010) Compliance Process Analysis for Forging Manipulator, Journal of Mechanical Engineering, v. 46, n. 4, p. 27-34.




DOI: http://dx.doi.org/10.14807/ijmp.v6i3.235

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c)



LIBRARIES BY

Logo Gaudeamus

Logo INDIANA

Logo CHENG KUNG

Logo UTEP

Logo MOBIUS

Logo UNIVEM

Logo Kennedy

Logo Columbia

Logo UCS

Logo MSG/UFF

Logo OPT

Logo Biblioteca Professor Milton Cabral Moreira

Logo UFL

Logo ULRICHSWEB

Logo UNISA