Periodicity.: February - May 2014
e-ISSN......: 2236-269X
Cover Image

Garch model indentification using neural network

André Machado Caldeira, Maria Augusta Soares Machado, Reinaldo Castro Souza, Ricardo Tanscheit

Abstract


GARCH models are being largely used to estimate the volatility offinancial assets, and GARCH(1,1) is the one most used. However, identificationof GARCH models is not fully explored. Some specialist systems technology havebeen used in some applications of time series models such as time seriesclassification problems, ARMA models identification, as well as SARIMA. The aim of this paper is to develop an intelligent system that can accurately identifythe specification of GARCH models providing the right choice of the model to beused, thus avoiding the indiscriminate usage of GARCH(1,1) model.

Keywords


GARCH; Volatility; Identification.

Full Text:

PDF HTML

References


BERNARDO, M. R.; FERNANDES, C. A. (1998) Utilização de Modelos não-lineares não-Gaussianos para Estimação de Volatilidade de Séries Temporais Financeiras. Dissertação (Graduação) – Pontifícia Universidade Católica do Rio de Janeiro.

BLACK, F.; SCHOLES, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy, n. 81, p. 637-59.

BOLLERSLEV, T. (1986) Generalized autorregressive conditional heteroskedasticity, Journal of Econometrics, n. 31, p. 303-327.

BOLLERSLEV, T.; ENGLE, R.; WOOLDRIDGE, J. (1988) A capital asset pricing model with time varying covariances. Journal of Political Economy, n. 96, p. 116-131.

BOX, G. E. P.; JENKINS, G. M. (1976) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.

CLARK, P. K. (1973) A subordinated Stochastic Process model with finite variance for speculative prices. Econometrica, n. 41, p. 135-155.

ENGLE, R. F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, v. 50, n 4, p. 987-1007.

ENGLE, R. F.; NG, V. K. (1993) Measuring and testing the impact of news on volatility. Journal of Finance, n. 48, p. 1749-1778.

FAMA, E. (1963) Mandelbrot and the Stable Paretian hypothesis. Journal of Business, n. 36, p. 420-429.

FAMA, E. (1965) The behavior of stock prices, Journal of Business, n. 47, p. 244-280.

FRANSES, P. H.; DIJK, D. V. (2000) Nonlinear time series models in empirical finance. Cambridge University Press.

GLOSTEN, L.; JAGANNATHAN, R.; RUNKLE, D. (1993) Relationship between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, n. 48, p. 1779-1801.

HARVEY, A. C.; RUIZ, E.; SHEPHARD, N. (1994) Modeling Stochastic variance models. Review of Economic Studies, n. 61, p. 247-267.

HAYKIN, S. (1999) Neural networks: a comprehensive foundation. Prentice-Hall.

HULL, J.; WHITE, W. (1987) The pricing of options on assets with stochastic volatility. Journal of Finance, n. 42, p. 281-300.

MACHADO, M. A. S (2000) Auxílio à Idenficação de Modelo Box & Jenkins Usando Redes Neurais Nebulosas. Pesquisa Naval, n. 7, p. 49.

MANDELBROT, B. (1963) The variation of certain speculative prices. Journal of Business, n. 36, p. 394-419.

MORETTIN, P. A.; TOLOI, C. M. C. (2004) Análise de séries temporais. Edgard Blücher, São Paulo.

NELSON, D. (1991) Conditional heteroskedasticity in assets returns: a new approach. Econometrica, v. 59, n. 2, p. 347-370.

NELSON, D. B.; CAO, C. Q. (1992) Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, n. 10, p. 229-235.

RABEMANANJARA, R.; ZAKOIAN, J. M. (1993) Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, n. 8, p. 31-49.

REYNOLDS, B.; STEVENS, T.; MELLICHAMP, R.; SMITH, M. J. (1995) Box-Jenkins Forecast Model Identification, A.I. Expert.

SILVA, L. M. (2005) Uma aplicação de Árvores de Decisão, Redes Neurais e KNN para a Identificação de Modelos ARMA não Sazonais e Sazonais. Tese de Doutorado em Engenharia Elétrica – Pontifícia Universidade Católica do Rio de Janeiro.

TAUCHEN, G. E.; PITTS, M. (1983) The price variability-volume relationship on speculative markets. Econometrica, n. 51, p. 485-505.

TAYLOR, S. J. (1980) Conjectured models for trend in financial prices, tests and forecast. Journal of the Royal Statistical Society, Series A, n. 143, p. 338-362.

TAYLOR, S. J. (1986) Modeling Financial Time Series. New York: John Wiley.

TAYLOR, S. J. (1994) Modeling Stochastic Volatility. Mathematical Finance, n. 4, p. 183-204.

VEIGA FILHO, A. L.; FERNANDES, C. A. C.; BAIDYA, T. (1993) Medidas de Volatilidade para Opções, XXV SBPO/SOBRAPO, n. 1, p. 185-187.

ZAKOIAN, J. M. (1991) Threshold heteroskedastic models, Technical report, INSEE.




DOI: http://dx.doi.org/10.14807/ijmp.v5i2.161

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c)



LIBRARIES BY

Logo Gaudeamus

Logo INDIANA

Logo CHENG KUNG

Logo UTEP

Logo MOBIUS

Logo UNIVEM

Logo Kennedy

Logo Columbia

Logo UCS

Logo MSG/UFF

Logo OPT

Logo Biblioteca Professor Milton Cabral Moreira

Logo UFL

Logo ULRICHSWEB

Logo UNISA