Comparative study of hybrid fiber cementitious composites
Main Article Content
Abstract
Different types of fibers impart specific characteristics to concrete, including crack bridging, early age crack resistance, ductility, toughness, strength, and loss of workability. It seems that if these fibers are combined, then specific characteristics of each fiber may be imparted to concrete and the desired characteristics of the concrete composite may be achieved. Thus, this investigation has been conducted to study the properties of concrete composites composed of four different types of fibers used singly or in hybrid form. The effectiveness of hybrid fibers in cementitious composites to achieve better characteristics; strengths, toughness, workability, and cost, was investigated and compared. Composites made of carbon fiber, plain steel fiber, polypropylene fiber, and glass fiber and their hybrid combinations (2, 3 and 4 fibers mixed), at constant volume of fiber 1.25%, along 4% styrene-butadiene rubber latex and 1.5% superplasticizer, are prepared and tested. The composites are compared and investigated for their feasibility in terms of their properties and cost. The comparison showed the suitability of some bi-hybrid composites, and incompatibility of tri-hybrid and tetra-hybrid composites in terms of effectiveness and feasibility.
Downloads
Article Details
1. Proposal of Policy for Free Access Periodics
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 that allows the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in an institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
Proposal of Policy for Periodic that offer Postponed Free Access
Authors whom publish in this magazine should agree to the following terms:
a. Authors should keep the copyrights and grant to the magazine the right of the first publication, with the work simultaneously permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 [SPECIFY TIME HERE] after the publication, allowing the sharing of the work with recognition of the authorship of the work and initial publication in this magazine.
b. Authors should have authorization for assuming additional contracts separately, for non-exclusive distribution of the version of the work published in this magazine (e.g.: to publish in institutional repository or as book chapter), with recognition of authorship and initial publication in this magazine.
c. Authors should have permission and should be stimulated to publish and to distribute its work online (e.g.: in institutional repositories or its personal page) to any point before or during the publishing process, since this can generate productive alterations, as well as increasing the impact and the citation of the published work (See The Effect of Free Access).
d. They allow some kind of open dissemination. Authors can disseminate their articles in open access, but with specific conditions imposed by the editor that are related to:
Version of the article that can be deposited in the repository:
Pre-print: before being reviewed by pairs.
Post-print: once reviewed by pairs, which can be:
The version of the author that has been accepted for publication.
The editor's version, that is, the article published in the magazine.
At which point the article can be made accessible in an open manner: before it is published in the magazine, immediately afterwards or if a period of seizure is required, which can range from six months to several years.
Where to leave open: on the author's personal web page, only departmental websites, the repository of the institution, the file of the research funding agency, among others.
References
AFROUGHSABET, V.; BIOLZI, L.; MONTEIRO, P. J. (2018) The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Composites Part B: Engineering, v. 139, p.84-96.
ACI 446.1 R-91 (1991) Fracture mechanics of concrete: concepts, models and determination of material properties, Reported by ACI Committee 446, Fracture Mechanics, (Reapproved 1999).
AHMED, K. (2009) Bond strength of ultra high strength concrete at intersection of beams (Doctoral dissertation, University of Engineering & Technology, Lahore).
BADR, A.; ASHOUR, A. F.; PLATTEN, A. K. (2006) Statistical variations in impact resistance of polypropylene fiber-reinforced concrete. International Journal of Impact Engineering, v. 32, n. 11, p. 1907-1920.
BANTHIA, N.; MAJDZADEH, F.; WU, J.; BINDIGANAVILE, V. (2014) Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, v. 48, p. 91-97.
BENTUR, A.; MINDESS, S. (2006) Fibre reinforced cementitious composites. Crc Press.
BROEK, D. (1974) Elementary engineering fracture mechanics, 1st edition, ISBN: 90 286 0304 2, Noordhoff International Publishing Lyden, 1974.
HOSSAIN, M. Z.; AWAL, A. A. (2011) Flexural response of hybrid carbon fiber thin cement composites. Construction and Building Materials, v. 25, n. 2, p. 670-677.
KAKOOEI, S.; AKIL, H. M.; JAMSHIDI, M.; ROUHI, J. (2012) The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, v. 27, n. 1, p. 73-77.
KAWAMATA, A.; MIHASHI, H.; FUKUYAMA, H. (2003) Properties of hybrid fiber reinforced cement-based composites. Journal of advanced concrete Technology, v. 1, n. 3, p. 283-290.
PAKRAVAN, H. R.; LATIFI, M.; JAMSHIDI, M. (2017) Hybrid short fiber reinforcement system in concrete: A review. Construction and building materials, v. 142, p. 280-294.
SIDDIQI, Z. A.; HAMEED, R.; SALEEM, M.; KHAN, Q. S.; QAZI, J. A. (2013) Determination of Compressive Strength And Water Absorption of Styrene Butadiene Rubber (SBR) Latex Modified Concrete. Pakistan Journal of Science, v. 65, n. 1, p. 124.
SATHISHKUMAR, T. P.; NAVEEN, J. A.; SATHEESHKUMAR, S. (2014) Hybrid fiber reinforced polymer composites–a review. Journal of Reinforced Plastics and Composites, v. 33, n. 5, p. 454-471.
SILVA, E. R.; COELHO, J. F. J.; BORDADO, J. C. (2013) Hybrid polyethylene/polypropylene blended fiber-reinforced cement composite. Journal of Composite Materials, v. 47, n. 25, p. 3131-3141.
SIVAKUMAR, A.; SANTHANAM, M. (2007) Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cement and Concrete Composites, v. 29, n. 8, p. 603-608.
SONI, K.; JOSHI, Y. P. (2014) Performance analysis of styrene butadiene rubber-latex on cement concrete mixes. Journal of Engineering Research and Applications, v. 3, n. 1, p. 838-44.
WANG, R.; LACKNER, R.; WANG, P. M. (2011) Effect of styrene–butadiene rubber latex on mechanical properties of cementitious materials highlighted by means of nanoindentation. Strain, v. 47, n. 2, p. 117-126.
YAO, W.; LI, J.; WU, K. (2003) Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and concrete research, v. 33, n. 1, p. 27-30.
ZHANG, C.; CAO, M. (2014) Fiber synergy in multi-scale fiber-reinforced cementitious composites. Journal of Reinforced Plastics and Composites, v. 33, n. 9, p. 862-874.