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ABSTRACT 

The tremendous advancement in technology, productivity and improved 

standard of living has come at the cost of environmental deterioration, increased 

energy and raw material consumption. In this regard, remanufacturing is viable 

option to reduce energy usage, carbon footprint and raw material usage. In this 

manuscript, using computational intelligence techniques we try to determine the 

feasibility of remanufacturing in case of roller bearings. We collected used N308 

bearings from 5 different Indian cities. Using Fuzzy-TOPSIS, we found that the 

roundness, surface roughness and weight play a vital role in design for 

remanufacturing of roller bearings. Change in diameter, change in thickness and 

change in width showed minimal influence.  We also used Taguchi analysis to 

reassess the problem. The roundness of inner and outer race was found to be the 

most influential parameters in deciding the selection of bearing for 

remanufacturing.  
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The results suggest the bearing designer to design the bearing in such a way that roundness of 

both races will be taken cared while manufacturing a bearing. However, using Taguchi the 

weight of the rollers was found to be of least influence. Overall, the predictions of Taguchi 

analysis were found to be similar to Fuzzy-TOPSIS analysis. 

Keywords: Taguchi analysis; Fuzzy-TOPSIS; remanufacturing 

1. INTRODUCTION 

 In earlier day’s manufacturers used to ignore the used products and these scraps would 

eventually pose a landfill problem. However, due to recent stringent environmental rules 

manufacturer has to consider the end of life strategies for recycling of product (DINDARIAN 

et al., 2012). Sustainable remanufacturing is a critical tool required to improve the efficiency 

of a product recovery.  

 To have the necessary efficient and flexible remanufacturing system, part information 

and actual condition of product become vital at end of life. For efficient remanufacturing, 

challenges are the collection of cores, flexibility in process and redistribution of products (LIU, 

et al., 2016). Selection of components in remanufacturing always have some constraints with 

a specific objective, again at the time of selection one cannot estimate the consequences of the 

process accurately (PUROHIT; RAMACHANDRAN, 2015).  

 Remanufacturing is a systematic process to bring the product back into function. It 

includes sorting and inspection of components followed by disassembling the components for 

reprocessing (FEGADE; SHRIVATSAVA; KALE, 2015). Parts disassembled can be replaced 

if it cannot be repaired or reprocessed to meet the required quality and functionality.  

 Remanufacturing is beneficial to the environment as it diverts the scrap components 

from a landfill. It also requires less energy and material as compared to new component 

manufacturing (KENNE; DEJAX; GHARBI, 2012). Among all end of product life recycling 

strategies, remanufacturing is perhaps the most potent one as component returned through 

remanufacturing has specification nearly same as a new one.  

 Additionally, it saves time, material and energy imparted over the product. Higher 

quality of product remanufacturing provides longer life extension and viable products. 

Remanufacturing is a comprehensive industrial process by which a previously sold, worn, or 

non-functional product or module is returned to a “like-new” or “better than new” condition 

and warranted in performance level and quality (AYDIN; KWONG; JI, 2015). 
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 Remanufacturing, though still an evolving industry, holds many ecological and 

economic benefits. Remanufacturing is the complete or partial reconstruction or overhaul of a 

product to the original stipulation of reusable and repairable parts and replacing some 

completely worn out parts by new ones (BENKHEROUF; SKOURI; KONSTANTARAS, 

2016).  

 Product recovery is to retrieve a product when the product no longer fulfills desired 

needs. Product recovery involves recycling, reuse and remanufacturing (HILGER; SAHLING; 

TEMPELMEIER, 2016). Integration of remanufacturing in closed loop supply chain as a 

significant end of life product recovery system could potentially generate benefits to both the 

business and the environment. For any company which manufactures and sell both new and 

remanufactured products, optimizing the product design is very difficult.  

 The design decisions taken at early stages have more influence on profits in 

manufacturing and remanufacturing (RAMACHANDRAN; AGARWAL, 2017). 

Remanufacturing has environmental benefits as well as significant potential to influence 

product economy in reverse logistic. Remanufacturing begins with identification and 

inspection of cores (scrap products) further disassembly, reconditioning, assembly and testing 

(ZHANG et al., 2011). 

 Inspections of cores are the critical activity which leads to the effectiveness of the 

remanufacturing. Remanufacturing is a generic term for technical renovation or engineering 

activities of waste products. In remanufacturing, a large number of inspections and evaluations 

of the failure conditions of the parts have to be done, which are uneconomical and inefficient 

(SUGUMARAN; RAMACHANDRAN, 2007).  

 After the inspection and selection of the parts, disassembly is the process which gives 

large impact in any remanufacturing system (FORD; DESPEISSE, 2016). It depends upon the 

volume of the returned product as volume increases this process becomes more significant 

because the efficiency of remanufacturing depends upon the effectiveness of the disassembly 

process (KWAK; KIM, 2015; SUBRAMANIAN; FERGUSON; TOKTAY, 2013). 

 Selection of the components for remanufacturing is largely affected by the disassembly 

process. Parameters which influence disassembly of the component are also useful criteria for 

the selection of the components for remanufacturing (HATCHER; IJOMAH; WINDMILL, 

2011).  
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 In this paper, focus is on the selection and optimization of suitable components for 

remanufacturing. Optimization may be defined as the minimization of unnecessary traits and 

maximization of necessary ones, to find the most effective and highest attainable performance 

(SAHARE et al., 2018). In this study, different parameters were considered which affects the 

viability in remanufacturing as well as impacts the recovery of a product during 

remanufacturing.  

 Powerful and robust computational intelligence techniques like Fuzzy-TOPSIS and 

Taguchi were used in this research for selection of bearings for remanufacturing. Fuzzy-

TOPSIS is a perfect blend of multi-criteria decision methods and fuzzy set theory which 

handles uncertain and incomplete information (MANICKAM, 2016).  

 Taguchi method is used to decrease the sensitivity of engineering designs towards 

ungovernable noise or factors (PANDEY; DUBEY, 2012). Taguchi method uses S/N ratio 

which shows experimental data quality characteristics for better optimization results.  

2. HYBRID FUZZY-TOPSIS & TAGUCHI OPTIMIZATION 

 Fuzzy refers to the situation whose set of activity boundaries are not well defined. 

TOPSIS is a widely adopted MCDM technique to solve multiple-criteria decision-making 

problems in various fields (HAMDAN; SARHAN; HAMDI, 2012). Fuzzy-TOPSIS is domain 

independent and thus may be applied virtually to any problem. Several research groups like 

Shiraz, Mirac, Sengul and coworkers (SENGUL et al., 2015; SHIRAZ et al., 2014; BAKIRCI 

et al. 2014; SENGUL et al., 2016; EREN, 2018; SHIVAKOTI et al., 2017; DIYALEY et al., 

2017; DAS et al., 2017; RAGAVENDRAN et al., 2018; AIKHUELE et al., 2017; AIKHUELE 

et al., 2017; AZIZI et al., 2015) has regularly used Fuzzy-TOPSIS or its variants in a wide 

range of problems.  

 Taguchi Analysis is implemented in four steps which are – (i) Design of Experiments 

(DOE) (ii) selection of model (iii) analysis of responses (iv) desirability function analysis. The 

traditional experimental design results in a very large number of experiments. DOE endeavors 

to plan systematic conduction of experiments to acquire data in an intelligent and controlled 

manner with minimum efforts.  

 The process can be divided broadly into three parts as System; Input Factors and 

Responses. The system can be considered as the heart of the process (KIVAK; SAMTACS; 

CICEK, 2012). Input factors are variable signals which serve as starting mechanisms of the 
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process. With the help of Fuzzy-TOPSIS, input factors such as various diameters of outer race, 

inner race and roller diameter combinations were finalized and utilized in Taguchi analysis.  

 The response is nothing but the performance output of the system. In this case, 

responses were outer race surface roughness, inner race surface roughness, roller surface 

roughness, and outer race roundness, inner race roundness, roller roundness, outer race weight, 

inner race weight and roller weight.  

 Data obtained from DOE provides the information necessary to establish the 

relationship between the specified input factors and the responses of the given process. The 

possible values of input factors are termed as levels. The selection of the input factors, their 

levels and responses are the most important and critical stage in the analysis. In DOE when all 

possible combinations of given input factor levels are considered, it is termed as a full factorial 

design (FFD) (GUNAY; YUCEL, 2013).  

 However, in this study only existing product combinations of bearings were considered 

for analysis. An empirical model is selected to establish the relationship that exists between the 

design input factors and the response. A regression model is selected here and it also referred 

to as the main effect model. The main effect model needs a smaller number of experiments 

than its extension. Each experiment corresponds to a set of responses.  

 The response values acquired from comparatively few experiments enables response 

prediction for FFD. As this is a multi-response optimization problem, a popular simultaneous 

optimization approach is employed. The optimal solutions were arranged in the descending 

order of their combined desirability value. This feature of Taguchi analysis can be used to 

acquire multiple optimal solutions. In this paper Design-Expert version 11 software was used 

for implementation of Taguchi Analysis. 

3. ROLLER BEARINGS SELECTION  

 The development of roller bearings and its components has been a research objective 

for more than five decades (WEINZAPFEL; SADEGHI, 2009). Roller bearings technically 

comprise of four components namely outer ring, inner ring, roller elements and cage (LU et al., 

2013). We selected N308 bearing manufactured by Austin Engineering Company, Gujarat, 

India for our analysis. We collected two used bearings each from different cities having 

different climatic conditions namely Mumbai, Delhi, Guwahati, Jaipur and Shimla for 

understanding the behavior of bearings with climatic conditions. The specifications of N308 
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bearings are bore diameter (d) 40 mm, outer diameter (D) 90 mm, width (B) 23 mm and weight 

(g) 662 grams. Fig. 1 shows the different parts of the N308 Bearings. 

 
Figura 1: N308 Bearing Parts 

 Using Fuzzy-TOPSIS, we observed that the roundness, surface roughness and weight 

play a vital role for design for remanufacturing of roller bearings. Change in diameter, change 

in thickness and change in width were the least preference (SELVARAJ; MARAPPAN, 2011; 

SERVAIS; DUQUENNE; BOZET, 2013).  

 We carried out roundness test in Carl Zeiss Rondcom 41C. Surface roughness was 

checked in Carl Zeiss Surfcom S130. The weight was measured using mLabs_SF400C, ASIN: 

B07B1XKKGW capacity 600g/10mg readability 0.01g/ minimum weight 0.05g, weight 

balance. We measured inside diameter of outer race and outside diameter of inner race and the 

roller diameter was taken as a mean of all the rollers diameters in the bearings. We used the 

three-point technique to measure the diameters with a coordinate measuring machine (GmbH 

Carl Zeiss Contour G2, Capacity: Size 700 X 700 X 600 mm). 

4. TESTING PARAMETERS SELECTION 

 We used Fuzzy-TOPSIS analysis for testing parameter selection. Linguistic variables 

R1, R2, R3, R4, R5, R6 were assigned to various impacts of testing, like remanufacture ability, 

quality, level of integration, cost saving, End of life condition and durability. Similarly, P1, P2, 

P3, P4, P5, and P6 were assigned for the testing parameters. The linguistic variables and testing 

parameters are reported in Table 1.  

Table 1: Linguistic variables and testing parameters 
Requirements Description Parameters Description 
R1 Remanufacture ability P1 Surface Roughness 
R2 quality P2 change in Diameter 
R3 Level of Integration P3 change in Thickness 
R4 Cost saving P4 Change in Width 
R5 EOL condition P5 Weight 
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R6 Durability P6 Roundness 
 

Table 2: Fuzzy number allotment for Requirements and Testing’s parameters 
Requirements for Design of Remanufacturing Testing’s parameters 
 Notation Fuzzy No  Notation Fuzzy No 
Not important A (0,0, 0.1) Very poor P (0,0,0.1) 
Less important B (0,0.1,0.3) Medium poor Q (0,0.1,0.3) 
Medium Less important C (0.1,0.3,0.5) Poor R (0.1,0.3,0.5) 
Medium important D (0.3,0.5,0.7) Fair S (0.3,0.5,0.7) 
Medium high important E (0.5,0.7,0.9) Good T (0.5,0.7,0.9) 
High important F (0.7,0.9,1) Very Good U (0.7,0.9,1) 
Very high important G (0.9,1,1) Excellent V (0.9,1,1) 

 The results are classified as very poor, medium poor, poor, fair, good, very good and 

excellent (Table 2). The notation and the fuzzy number of each of the six grades for both 

requirements for the design of remanufacturing and testing's parameters were made with 

respect to triangular membership function.  

 Table 3 highlights the opinions given by three decision makers (DM1, DM2, DM3) on 

requirements for the design of remanufacturing. We took DM as design engineers from bearing 

manufacturing industries. The same decision maker's opinion regarding the requirements for 

the design of remanufacturing with respect to testing’s parameters was taken in order to 

enhance the design for remanufacturing (Table 4). Based on the aggregate fuzzy numbers 

obtained, fuzzy numbers are assigned to the linguistic variables suggested by the decision 

maker. The values of normalized fuzzy decision matrix are weighted by multiplying them with 

the relevant aggregated fuzzy number (Table 5). 

Table 3: Design makers opinion  
Requirements for design of remanufacturing DM1 DM2 DM3 Aggregate Fuzzy No. 
R1 G F G (0.84,0.97,1) 
R2 E G F (0.7,0.87,0.97) 
R3 E F C (0.44,0.64,0.8) 
R4 F D E (0.5,0.7,0.87) 
R5 C E F (0.44,0.64,0.8) 
R6 G F F (0.76,0.93,1) 

Table 4:  Decision maker’s opinion about requirements for design of remanufacturing with 
respect to testing’s parameters 

 R1 R2 R3 R4 R5 R6 
P1 T T T P R S 
P2 V S U R U S 
P3 U T U Q S S 
P4 V S U T Q R 
P5 T U U R T T 
P6 V V V V U U 
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Table 5: Weighed normalized fuzzy decision matrix 
 R1 R2 R3 R4 R5 R6 
P1 (0.58,0.87,1) (0.35,0.60,0.60) (0.22,0.44,0.72) (0.45,0.7,0.87) (0.04,0.19,0.4) (0.22,0.46,0.7) 
P2 (0.75,0.97,1) (0.21,0.43,0.67) (0.30,0.57,0.8) (0.05,0.21,0.43) (0.30,0.57,0.8) (0.22,0.46,0.7) 
P3 (0.58,0.87,1) (0.35,0.60,0.60) (0.30,0.57,0.8) (0,0.07,0.26) (0.13,0.32,0.56) (0.22,0.46,0.7) 
P4 (0.75,0.97,1) (0.21,0.43,0.67) (0.30,0.57,0.8) (0.25,0.49,0.78) (0,0.06,0.24) (0.07,0.27,0.5) 
P5 (0.42,0.67,0.9) (0.49,0.78,0.97) (0.30,0.57,0.8) (0.05,0.21,0.43) (0.22,0.44,0.72) (0.38,0.65,0.9) 
P6 (0.75,0.87,1) (0.63,0.87,0.97) (0.39,0.64,0.8) (0.45,0.7,0.87) (0.30,0.57,0.8) (0.53,0.83,1) 

 Next, the ranking of the testing parameters was obtained using the relations below. 

D* represents the Fuzzy Positive Ideal Solutions (FPIS D*). 

D* = Σ ½ [max (|1st -1|; |3rd -1|) + (2nd -1)]                             

 Here, the values |1st -1| and |3rd -1| from weighed normalized decision matrix are 

compared. The greater of the 2 values is added to (2nd -1). 

D# represents the Fuzzy Negative Ideal Solutions (FNIS D#). 

D# = Σ ½ [max (|1stb b; - 0|, |3rd - 0|) + |2nd - 0|]    

 Here, the values |1st-0| and |3rd-0| from weighed normalized decision matrix are 

compared. The greater of the 2 values is added to (2nd-0).  

 Relative closeness coefficient of strategies(C*) = D#/ (D*+ D#)                                      

Table 6: Ranking of Testing’s Parameters 
Piston D* D# C* = D-/(D*+D#) RANK 
P1 3.44 3.695 0.518 2 
P2 3.48 3.805 0.522 4 
P3 3.765 3.405 0.474 5 
P4 3.815 3.39 0.470 6 
P5 3.41 4.02 0.541 3 
P6 2.235 4.76 0.680 1 
 

 From the Fuzzy-TOPSIS analysis, we found that roundness ranks first followed by 

surface roughness, weight, change in diameter, change in thickness, and change in width. The 

rankings and relative closeness coefficient are reported in Table 6. 

5. TAGUCHI OPTIMIZATION ANALYSIS 

 The surface roughness of outer race measured from inside face and inner race measured 

from outside face. Values obtained from the testing are reported in Table 7. For this experiment, 

we used the following notations— outer race diameter (F1); inner race diameter (F2); roller 

diameter (F3); outer race surface roughness (R1); inner race surface roughness (R2); roller 

surface roughness (R3); outer race roundness (R4); inner race roundness (R5); roller roundness 
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(R6); outer race weight (R7); inner race weight (R8) and roller weight (R9). The data of 11 

bearings were considered for analyses. The signal to noise ratio is calculated using the 

difference between the minimum and maximum response value and the standard deviation. 

Signal-to-Noise ratio was set as per data in Table 8. An optimized design is made by 

determining the parameters and their values. The data was feed in the software where the 

parameters were specified with their respective values as shown in Table 9.  

Table 7: Testing results for selected bearings 
Bearing no F 1 F 2 F 3 R 1 R 2 R3 R4 R5 R 6 R 7 R 8 R 9 
1 77.5247 53.5025 12.0071 0.131 0.079 0.106 3.5 6 0.001 283.203 207.141 11.2844 
2 77.5398 53.4566 12.0007 0.341 0.234 0.213 13 12.4 0.003 275.365 208.407 10.3439 
3 77.5083 53.5937 11.9957 0.267 0.658 1.156 4.7 9 0.0026 276.641 206.576 10.4011 
4 77.5183 53.4100 12.0134 0.293 0.155 0.332 8 251 0.0017 279.293 204.695 10.4361 
5 77.5458 53.4308 11.9583 1.381 0.675 1.45 120 30 0.0068 270.579 199.621 10.2388 
6 77.5039 53.5413 11.9655 0.837 0.814 1.422 13 63 0.0024 276.919 201.181 10.415 
7 77.5438 53.4570 11.8234 0.238 0.224 0.589 41 18 0.0068 282.843 199.934 9.8912 
8 77.5596 53.4617 12.0431 0.809 0.255 0.129 15 17 0.0021 276.158 207.732 10.4629 
9 77.5192 53.5189 12.0145 0.145 0.25 0.38 15.9 9 0.002 273.587 203.041 10.3922 
10 77.5086 53.3786 12.0041 0.554 0.307 0.711 17 18 0.0036 273.912 206.006 10.1073 
11 77.4961 53.4869 12.0081 1.409 0.509 0.347 68 9 0.0027 277.053 209.666 10.3417 

Table 8: S/N ratio for all responses 
Response Minimum Maximum Mean Std. Dev. S/N Ratio 
R1 0.131 1.409 0.5823 0.4683 10.76 
R2 0.079 0.814 0.3782 0.2437 10.30 
R3 0.106 1.45 0.6214 0.5015 13.68 
R4 3.5 120 29.01 35.57 34.29 
R5 6 251 40.22 71.73 41.83 
R6 0.001 0.0068 0.0032 0.0019 6.80 
R7 270.579 283.203 276.87 3.79 1.05 
R8 199.621 209.666 204.91 3.49 1.05 
R9 9.8912 11.2844 10.39 0.3412 1.14 

Table 9: Constraints used for optimization analysis 
Name Goal Lower Limit Upper Limit 
R1 minimize 0.361939 1.18701 
R2 minimize 0.281069 0.902219 
R3 minimize 0.325576 1.20416 
R4 minimize 1.87083 10.9545 
R5 minimize 2.44949 15.843 
R6 minimize 0.001 0.0068 
R7 maximize 270.579 283.203 
R8 maximize 199.621 209.666 
R9 maximize 9.8912 11.2844 

Table 10: Ranking of bearings 
Bearing No R1 R2 R3 R4 R5 R6 R7 R8 R9 Desirability 
1(new) 0.131 0.079 0.106 3.500 6. 0.001 283.203 207.141 11.284 0.968 
2 0.341 0.234 0.213 13.000 12.4 0.003 275.365 208.407 10.344 0.654 
8 0.809 0.255 0.129 15.000 17. 0.002 276.158 207.732 10.463 0.637 
9 0.145 0.250 0.380 15.900 9. 0.002 273.587 203.041 10.392 0.581 
3 0.267 0.658 1.156 4.700 9. 0.003 276.641 206.576 10.401 0.483 
10 0.554 0.307 0.711 17.000 18. 0.004 273.912 206.006 10.107 0.472 
6 0.837 0.814 1.422 13.000 63. 0.002 276.919 201.181 10.415 0.006 
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 Table 10 shows the best seven bearings which were selected for remanufacturing by 

Taguchi analysis having a positive desirability ratio ranging from 0.006 to 0.968. Bearing no. 

1 is a new bearing taken for reference purposes. This shows Taguchi analysis provided the 

significant results in the selection of bearings for remanufacturing and correspondingly all the 

bearing were graded as per the degradation of the bearing and four bearings we rejected due to 

excessive degradation over the lifetime. However, 60% of the old bearings were selected for 

remanufacturing by the analysis directly without doing any modification.  

 
Figure 2: (a) Desirability curve for bearing no. 1(new) (b) Desirability curve for bearing no. 2 

 Figure 2(a) shows the new bearing desirability curve and for that, we achieved a 

combined desirability value of 0.968. This shows even the new bearing having a slight variation 

from the optimized values. The desirability of all the testing parameters was achieved 100% 

except for the inner race weight which has a desirability of 0.74. This decrease in desirability 

is due to the manufacturing tolerance range set by the original equipment manufacturer which 

is acceptable.  

 Figure 2(b) shows the desirability curve for old used bearing no. 2. A combined 

desirability value of 0.635 was obtained for this case. The highest desirability value was for the 

inner race roundness and the lowest was inner race weight. The result shows that the inner race 

parameters are having both the lowest and highest desirability value but both are in the 

acceptable range. 

 
Figure 3: (a) Desirability curve for bearing no. 8, (b) Desirability curve for bearing no. 9 
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 Figure 3(a) shows the desirability curve for old used bearing no. 8 and for that, a 

combined desirability value of 0.637 was achieved. The highest desirability value was for the 

roller surface roughness and the lowest was inner race weight. The result shows that the inner 

race parameters are having lowest desirability value and second highest desirability value but 

both are in the acceptable range.  

 Figure 3(b) shows the desirability curve for old used bearing no. 9 having a combined 
desirability value of 0.580. The highest desirability value was for the outer race roundness and 
the lowest was outer race weight. The result shows that the outer race parameters are having 
both the lowest and highest desirability value but both are in the acceptable range.  

 
Figure 4: (a) Desirability curve for bearing no. 3 (b) Desirability curve for bearing no. 10 

Figure 4(a) shows the desirability curve for old used bearing no. 3 with a combined desirability 

value of 0.483. The highest desirability value was for the outer race roundness and the lowest 

was inner race surface roughness. The desirability curve for bearing no. 10 was reported in 

Figure 4(b) and has a combined desirability value of 0.471. The highest desirability value was 

for the inner race roundness and the lowest was roller weight.   

 
Figure 5: Desirability curve for bearing no. 6 
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been observed that both inner race and outer race roundness have not changed from the original 

dimensions. However the roller weight was getting reduced in most of the old bearings. This 

phenomenon is due to wear. This study reveals that the failure of the roller is usually because 

of the outer race roundness.  

6. CONCLUSION 

 Using advanced computational intelligence techniques like Fuzzy-TOPSIS and Taguchi 

analysis, we tried to understand the feasibility of roller bearing for design for remanufacturing. 

In our study, we achieved a combined desirability of 0.968 giving maximum importance to all 

the testing parameters and compromising slightly in inner race weight with the individual 

desirability of 0.748 on a scale of 1.   

 Overall in bearings which were selected by Taguchi analysis, the roundness of inner 

race and outer race were found to be the most influential parameters in deciding the selection 

of bearing for remanufacturing. The results suggest the bearing designers to design the bearing 

in such a way that the roundness of both races will be taken care off while manufacturing a 

bearing. The weight of the rollers was found to be the least influential parameter in deciding 

the selection of bearing for remanufacturing.  

 The result obtained from Taguchi analysis was seen to be similar to Fuzzy-TOPSIS 

analysis which infuses further confidence in the findings. As expected in the analysis, the 

bearing ranking one was the new one, this shows that roller bearing selection using Taguchi 

desirability analysis is a significant one. The study successfully highlighted the potential of 

remanufacturing of bearing strategy in Indian region since more than 50% of the bearings used 

in the analysis were selected for remanufacturing.  
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