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ABSTRACT 

In the prediction of (stochastic) time series, it has been common to 

suppose that an individual predictive method – for instance, an Auto-

Regressive Integrated Moving Average (ARIMA) model – produces 

residuals like a white noise process. However, mainly due to the 

structures of auto-dependence not mapped by a given individual 

predictive method, this assumption might be easily violated, in 

practice, as pointed out by Firmino et al. (2015). In order to correct it 

(and accordingly to produce forecasts with more accuracy power), this 

paper puts forward a Wavelet Hybrid Forecaster (WHF) that integrates 

the following numerical techniques: wavelet decomposition; ARIMA 

models; Artificial Neural Networks (ANNs); and linear combination of 

forecasts. Basically, the proposed WHF can map simultaneously linear 

– by means of a linear combination of ARIMA forecasts – and non-

linear – through a linear combination of ANN forecasts – auto-

dependence structures exhibited by a given time series. Differently of 

other hybrid methodologies existing in literature, the WHF forecasts 

are produced carrying into account implicitly the information from the  
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frequency presenting in the underlying time series by means of the Wavelet 

Components (WCs) obtained by the wavelet decomposition approach. All numerical 

results show that WHF method has achieved remarkable accuracy gains, when 

comparing with other competitive forecasting methods already published in 

specialized literature, in the prediction of a well-known annual time series of sunspot. 

Keywords: Wavelet decomposition, ARIMA model, Artificial neural networks, Linear 

combination of forecasts 

1. INTRODUCTION 

 Over the years, several forecasting methods have been proposed with the aim 

of producing increasingly accurate predictions of (stochastic) time series. In general, 

they could be split into two great exclusive categories: the individual (or single) 

predictive methods, such as the well-known Auto-Regressive Integrated Moving 

Average (ARIMA) models, as in Hamilton (1994); and the combination of individual 

predictive methods, proposed initially by Bates and Granger (1969). Indeed, the 

collection of single predictive methods might yet be regrouped into two exclusive 

classes: the statistical one (here it lies, for instance, the (linear) ARIMA models), and 

the machine learning one (here it lies the (non-linear) Artificial Neural Networks 

(ANNs), as in HAYKIN, 2001). By hybrid forecasting methods, it means those ones 

that always carry out the modelling of a given time series, denoted by , 

according to the following three steps: in Step 1, a single forecasting method from 

statistical class/machine learning class is applied to  for producing its 

forecasts as well as its residuals; in Step 2, the forecasting errors generated in Step 

1 are predicted by using an individual forecaster from machine learning 

class/statistical class; and, in step 3, the forecasts provided in Step 1 are “corrected” 

by the predictions of the residuals produced in Step 2 such that to generate the 

hybrid forecasts of the underlying time series . In effect, a hybrid 

predictive method can be referred to as particular case of combined forecasters. 

 In the process of prediction of time series, it has often been to assume that a 

single predictive method produces residuals like a white noise process (i.e., 

unpredictable). However, mainly due to the linear or non-linear structures of auto-

dependence not captured by a single predictive method adopted by the decision 
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maker, this supposition may be trivially broken, most applications in real world. For 

instance, the (linear) ARIMA models are able to statistically guarantee, based on a 

significance level , only uncorrelated residuals (but not statistical independence, as 

it is often assumed); this because, from mathematical point of view, those ones may 

be visualized as linear filters, as pointed out by Hamilton (1994). In turn, Zhang 

(2003) shows in his numerical experiments – on which three very popular time series 

were forecasted by employing an hybrid forecaster – that the residuals produced by 

the ARIMA models could be efficiently predicted by using non-linear forecasters 

(namely, the Multi-Layer Perceptron ANNs (MLP-ANNs), as in HAYKIN, 2001)). In his 

research, it can be verified that the ARIMA model forecasts were in fact remarkably 

improved when received the sum of the prediction of their respective residuals. 

Finally, in the numerical experiments in Firmino et al. (2015), each time series was 

modelled by means of several plausible ARIMA models whose forecasts were added 

by the predictions of their residuals produced by different ANNs; the results achieved 

exhibit a remarkable accuracy gain in the hybrid forecasts when compared with other 

traditional methods, in all adherence statistics. 

 In turn, wavelet decompositions of levels r have shown to be very efficient in 

dealing with time series forecasting due to its multi-scaling property, as highlighted in 

Teixeira Jr et al. (2015). Basically, from a given time series , through a 

wavelet decomposition of level r, its r+1 Wavelet Components (WCs) – namely, one 

WC of approximation at scale , represented by ሺtൌ1,…,Tሻ, and r WCs of 

detail at scales , denoted by , , …, 

, respectively – are produced. In one hand, the WCs can be 

interpreted as frequency patterns of the underlying time series  

represented at time domain. Each WC tends to exhibit lesser noise in its stochastic 

pattern than the underlying time series. On the other hand, more formally speaking, 

each WC is an orthogonal projection of  onto a pairwise orthogonal 

subspace (as in Kubrusly (2011)), recognized as the “wavelet subspaces”, of the 

space  (defined in Section 2.1). In this way, accuracy gains may be achieved when 
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the wavelet methods (as the wavelet decomposition) are adopted in the forecasting 

process. 

 Thus, the Wavelet Hybrid Methodology (WHF) proposed here aims to produce 

hybrid forecasts aggregating different information from different sources (i.e., 

numerical methods) with higher level of accuracy than other methodologies 

presenting in literature. The WHF integrates the following approaches: wavelet 

decomposition of level r, in Section 2.1; ARIMA models, in Section 2.2; ANN 

methods, in Section 2.3. Section 3 describes detail all steps to carried out the WHF 

(in particular, presents the Linear Combination (LC) of forecasts proposed here). In 

general lines, the proposed WHF can capture, at the same time, linear (by means of 

a LC of ARIMA models) and non-linear (by using a LC of ANNs) auto-dependence 

structures exhibited by a given time series to be forecasted, as well as its information 

on spectral frequency. In a different way of other hybrid predictive methods in time 

series literature, the WHF hybrid forecasts implicitly adheres spectral information 

through the WCs and perform an alternative linear combination of forecasts, as it will 

be seen. In order to illustrate the proposed methodology, the Canadian lynx and the 

British pound/US dollar exchange rate time series are modelled and hence predicted, 

following Zhang (2003).  

 The current paper is split into 5 sections. Beyond the introduction (Section 1), 

in Section 2, a review of the used methodologies is presented; Section 3 describes 

the steps of the proposed WHF; in Section 4, the main numerical results are delayed 

and comments upon; and, finally, in Section 5, the paper is closed. 

2. REVIEW OF LITERATURE 

 The purpose of this section is to present a brief review of some basic concepts 

which are needed for defining the WHF method, described in Section 3. It starts, in 

Section 2.1, by describing the wavelet decomposition of level r, which is the algorithm 

adopted in initial step of the ARIMA and ANN methods. This is followed by the basic 

concepts on ARIMA and ANN models, in Sections 2.2 and 2.3, respectively. 

2.1. Wavelet decomposition of level r  

 Based on Kubrusly and Levan (2006), and Teixeira Jr et al.(2015), if a subset 

, wherein  takes a fixed integer value, is in fact an 
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orthonormal basis for the space , wherein , then a vector 

 belonging to  can be orthogonally decomposed, in terms of 

, as in (1). 

 

                                                                                    (1) 

 
Where:  is recognized as the WC of approximation at 

level  of the state , with ; and  is 

referred to as the WC of detail at level  of , with . The 

orthogonal decomposition in (1) is usually called a wavelet decomposition of . 

Tautologically, any finite scalar-valued complex time series  may be 

interpreted as an infinite sequence  in , defined as follows: , if 

; and , if . In effect, each state  can be 

orthogonally expanded by means of a wavelet decomposition, as the identity in (1). 

However, in practical terms, it cannot model individually all WCs generated by the 

expansion (1). Consequently, an adaptation is required in order to obtain a finite 

number of WCs. In this perspective, Donoho and Johnstone (1994) have proposed 

the wavelet decomposition of level r, wherein  and , defined for each state 

, as below 

                                                                        (2) 

 
where  is the level parameter (which is commonly assumed to be equal to r); 

 and  (that consist, 

respectively, of the approximations of the WCs  and  from Equation (1), 

wherein  is such that );  is a parameter that takes an 
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integer value such that ; and is the error vector of approximation of the 

state  (where is usually assumed to be equals zero).  

 Importantly, if T is not an integer power of 2, it is often to fill in the underlying 

time series with zeros until its length T is increased up to the next integer power of 2. 

This procedure may be always carried out due to the fact that the zeros added up do 

not affect the calculation of the WCs  and  in (2), what means the previously 

auto-correlation exhibited by , as well its WCs, is preserved (HAVEN; 

LIU; SHEN, 2012). 

2.2. ARIMA models 

 Let  be a time series exhibiting structure of auto-correlation. 

According to Liu (2006),  is an ARIMA (p,d,q) process, if only if, it can 

be represented as in Equation (3): 

 
                                                                   (3) 

 
 Where: B is a backward operator, defined by , wherein k runs over 

in the set ;  is the difference operator, with d representing its order; 

 and are the lists of model complex parameters, with  and , 

where they must satisfy both the invertibility and the stationarity conditions (as in 

HAMILTON, 1994);  is the innovation consisting of a state of the random variable  

of a white noise stochastic process, denoted by , with zero mean and 

null auto-covariance; p and q are, respectively, the orders of the auto-regressive part, 

denoted by , and of the moving average part, represented by part 

.  

 According to Liu (2006), in order to obtain the best possible ARIMA model, 

three basic steps should be carried out: (i) test the plausible values for the 

parameters p, d, and q, in Equation (3), which can be obtained through the profile 
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analysis of the plots of simple and partial auto-correlation functions of the residuals 

(as in HAMILTON, 1994); (ii) define the method to be used to estimate the ARIMA 

parameters (the most common is the Maximum Likelihood Estimation method (as in 

Liu (2006)); and, (iii) make a diagnostic check to choose the most parsimonious and 

adequate model to be used for generating both the in-sample and the out-of-sample 

forecasts of . 

2.3. Artificial Neural Network 

 Artificial Neural Networks (ANNs) are well-known to be flexible computing 

frameworks for modeling and forecasting a broad range of stochastic time series 

exhibiting either linear or non-linear auto-dependence structures. Contrary to many 

linear statistical forecasting models, stationarity is not required by ANN methods (see 

e.g. TEIXEIRA JR. et al., 2015).  

 Another important aspect of ANNs is that they are universal approximates of 

compact (i.e., closed and bounded) support functions, as showed in Khashei and 

Bijari (2011). In effect, since observations from a time series  that 

exhibit dependency on past values may be seen as points of the domain of an 

unknown compact support function, it follows that the ANNs are capable of 

approximating them (for modeling or forecasting) with a high degree of accuracy.  

 According to Zhang (2003), the predictive power of ANNs comes from the 

parallel processing of the information exhibited by the data. In addition, AAN models 

are largely determined by the stochastic characteristics inherent in the time series.  

 In this context, the feedforward multilayer perceptron ANNs (see e.g. HAYKIN, 

2001) are the most widely used neural prediction models for time series forecasting. 

Particularly, an artificial network composed by three layers (namely, input, hidden an 

output layers) of simple processing units numerically connected by acyclic links. The 

relationship between the output  and the L-lagged inputs, represented by 

, has the following Equation (4): 

 
                                                                      (4) 
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where  and  are the ANN parameters, 

called connection weights;  is the number of input nodes;  is the number of hidden 

nodes;  is the approximation error at time t; and  is the transfer function, here, a 

logistic function - although it is possible to adopt other functions (see e.g HAYKIN, 

2001). The logistic function is widely employed as the hidden layer transfer function 

in neural network forecasting and is mathematically defined by Equation (5): 

 

                                                                                         (5) 

 
where  and  is the exponential function with Euler’s 

basis (as in Haykin, 2001). Due to  being a non-linear transfer function, the ANN 

model in (5), in fact performs a non-linear mapping of the past observations 

 to produce a forecast for . 

3. PROPOSED METHODOLOGY 

 Let  be a time series for which k steps-ahead forecasts are 

required in a forecasting horizon h. For this purpose, the WHF proposed here is 

carried out accordingly by the following six steps. 

Step 1: A wavelet decomposition of level r of  is performed, producing 

its r+1 WCs – namely, one WC of approximation at level , denoted by 

, and r WCs of detail at levels from  to , denoted, 

respectively, by , , …., . 

Step 2: The r+1 WCs generated in Step 1 are individually modelled through ARIMA 

model in order to yield the following lists of in-sample and out-of-sample forecasts: 

, and , …, , where h 

represents the forecasting horizon, and , the value of degrees of freedom lost in the 

ARIMA modelling. It is important to point out that  and , for 
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each , denote, respectively, the prediction (from ARIMA 

model 1) of  and the prediction (from ARIMA model m+1) of . 

Step 3: The forecasts of the r+1 WCs from Step 2 are linearly combined by means of 

the LWC, defined in Equation (6). 

 

                                                                         (6) 

 
 Where  is the combined linear forecast of ; and , , …,  

are the optimal LWC parameters, which are obtained by solving the NLP 

(RAGSDALE, 2004) described below. 

 
Objective: minimize MSE. 

Subject to: 

 

 
 
 Where,   is the list of (in-sample) forecasting 

errors; and  and  are the decision variables (to be 

optimized and substituted in Equation (6)).  

Step 4: The list  is decomposed by a wavelet decomposition of 

level k, providing its k+1 WCs – i.e., one WC of approximation at level , denoted 

by , and k WCs of detail at levels from  to , 

denoted, respectively, by , .  

Step 5: Each k+1 WC produced in Step 4 is used as input patterns in the ANN in 

order to generate the combination of the following list of in-sample and out-of-sample 

forecasts , where , is the degrees of freedom lost until here.  
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Step 6: The combined linear forecasts  (from Step 3) and the combined non-

linear forecast  (from Step 5) are simply summed for each instant t (i.e., 

), producing the in-sample and out-of-sample hybrid forecasts, 

denoted by , of the underlying time series .  

 Following the above seven steps of the WHF, it is worth noting some important 

aspects. Firstly, Steps 1 and 4 are aimed to obtain a finite number of temporal 

subseries (WCs) with better stochastic pattern than the underlying time series. It is 

possible due to the fact each WC has a stationary spectral frequency, as noted in 

Mallat (2009); while  can be seen as the result of the sum of spectral 

components with different frequencies, as pointed by Levan and Kubrusly (2003).  

 Secondly, in Step 2, the goal is to identify a plausible linear auto-dependence 

structure (i.e., a linear forecaster), the ARIMA models were chosen here, as they are 

widely adopted for this purpose, as highlighted by Hamilton (1994). Thirdly, in Step 3, 

after identifying a plausible linear structure for each WC, their predictions are linearly 

combined by means of the WLC and then generated the combined linear forecasts, 

which decode linear information exhibited by .  

 Consequently, the forecast  is in fact a forecast of  and allows for being 

interpreted as an aggregator of distinct linear information from different linear sources 

(i.e., the r+1 different linear ARIMA models).  

 Fourthly, in Step 4, each WC produced here is endowed with noise (like a 

white noise) and non-linear auto-dependence structure of , as the 

forecasting errors  are, following (HAMILTON, 1994), outcomes 

from a linear filter (in this case, the WLC of ARIMA models, in Step 3).  

 The WLC of ARIMA models is not able to map properly non-linear auto-

dependence structures. In effect, it is easily noticed that each WCs of the residuals 

needed to be modelled by a non-linear forecaster. Unlikely, important information 

could be lost in the predictive process. Thus, in Step 5, each WC was combined by a 
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(non-linear) ANN model. The software library used here allows for the parameters 

may be set by the decision maker. 

 Fifthly, in Step 6, the forecast produced in Step 5 generate the list 

 of in-sample and out-of-sample combined forecasts that provide 

information on the non-linear auto-dependence structure of . Similarly 

to the combined linear forecast ,  can be interpreted as an aggregator of non-

linear information from different nonlinear sources (namely, the r’+1 ANN models). 

Sixthly, the hybrid forecasts , endowed with both linear and 

non-linear information, can be seen as a version of  filtered by 

both a linear filter (namely, the WLC of ARIMA models, in Step 3) and a non-linear 

filter (i.e., the WLC of ANNs, in Step 5). Accordingly, the list of forecasting 

errors , note that , can be in fact classified as a 

noise process.  

4. NUMERICAL RESULTS 

 For evaluating the proposed hybrid methodology, an annual time series of 

sunspot concerning the period from 1700 to 1987 (resulting 288 points), plotted in 

Figure 1, the number of lynx caught per year in the Mackenzie Lake in Canada's 

northern district in period 1821 to 1934 (114 observations) in Figure 2, the weekly 

British pound/US dollar exchange rate from the year 1980 to 1993 (731 points), in 

Figure 3, have been projected here. As pointed out in Zhang (2003), prediction has 

practical importance for decision makers of several areas, as geophysicists, 

environment scientists, and climatologists.  

 In this paper, a comparison between the actual values and their forecasts is 

performed accordingly for a forecasting horizon out-of-sample, which is used for all 

approaches considered here. The E-Views 8 software was used for the ARIMA 

modelling; while the MLP ANN modelling was performed in MATLAB R2013a 

software.  

 In turn, the adjustment of LWC parameters in Steps 3 was done through the 

solver package of Excel 2013. Finally, the wavelet decompositions were 
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implemented in MATLAB R2013a software. Regarding the accurate performances, 

the MAE and MSE (see HAMILTON, 1994)), were taken into evaluation here. 
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Figure 1: Sunspot time series (1700-1987). 
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Figure 2: Canada's lynx time series (1821 to 1934). 
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 In Step 1, a Wavelet decomposition of level 2 with the Haar orthonormal basis 

of the training sample of time series of Sunspot was performed. The plots of the WCs 

can be seen in Figure 4. 

 

(a) WC of approximation at level 2, . 

 

(b) WC of detail at level 2, . 

 

(c) WC of detail at level 3, . 
Figure 4: WCs of the training sample of the Sunspot annual time series. 
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 Regarding Step 2, it has: 

a) An ARIMA(28,1,32) model, with logarithm transformation, for predicting the 

WC of approximation at level 2. Let  be, for each 

instant t, the first difference of  (which is the WC of approximation at level 2 

of the state ). Thereby, the mentioned predictor is algebraically given by 

Equation (7): 

  
                                                                    (7) 

 

b) b) An ARIMA (20,0,0) model for predicting the WC of detail at level 2. Assume 

that =  for each instant t. So, the mentioned model is (algebraically) 

defined by Equation (8): 

 
  

+  
                                                                                          (8) 

 

c) c) An ARIMA(20,1,28) model in order to forecast the WC of detail at level 3. 

Assume that = , for each instant t. So, the mentioned model is 

(algebraically) defined by Equation (9): 

 
  

  
                                                                                 (9) 

 

 The method used here for estimating the complex parameters in items (a), (b) 

and (c) above was the Likelihood approach, as in Hamilton (1994).  

 The optimal adaptive parameters from Step 3 are equal to , 

, .  

 Following, in Step 4, the predicting errors , being , 

produced in Step 3, was decomposed by means of a wavelet decomposition of level 

2, with orthonormal basis of Haar (see MALLAT,  2009)).  
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 The best configurations of the ANN required in Step 5 to model the three WCs 

of the forecasting errors , has five data of each decomposition in 

input layer and seven neurons in hidden layer. Finally, in Step 6, the forecasts 

produced in Steps 3 and 5 are simply summed, generating the hybrid forecasts 

(t= ), where , of the Sunspot time series. The plot of the out-of-

sample actual values and their hybrid forecasts can be visualized in Figure 5. 
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Figure 5: Hybrid forecasts and actual values of out-of-sample. 

 Table 1 exhibits the out-of-sample MSE and MAE adherence statistics 

regarding the forecasts of competing predictive methods; and the proposed WHF 

method (highlighted at the bottom of the Table 1). 

 
Table 1: MAE and MSE of out-of-sample values sunspot time series. 

REFERENCES METHODS 
67 steps-ahead 

MSE MAE 

(ZHANG, 2003) 
ARIMA 306.0 13.03 
ANN 351.1 13.54 

Hybrid 280.1 12.78 

(KHASHEI; BIJARI, 2011) ANN/ARIMA 218.6 11.45 

(ADHIKARI; AGRAWAL, 2013) 
SVM 792.9 - 

Ensemble ANN 280.5 - 
 Proposed WHF 69.28 3.90 

Source: The authors. 

 The models and parameters to the exchange rate time series are given in the 

Table 2, according to steps of the proposed method. 
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Table 2: Models and parameters to exchange rate methodology. 
 Variable Values 

ARIMA 

    

  

  

  

  

Adaptative 

Parameters 

  1.014978 

  0.88357 

  0.942313 

Source: The authors. 

 The predicting errors, being produced in Step 3, was decomposed by means 

of a wavelet decomposition of level 2, with orthonormal basis of Daubechies 45. The 

ANN input patterns has five observation of each decomposition and the hidden layer 

has six neurons. 

 The plot of the out-of-sample actual values and their hybrid forecasts of 

exchange rate can be visualized in Figure 6. 

0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31 36 41 46 51Lo
g 
 E
xc
h
a
n
ge
 r
at
e

Weeks

Actual Hybrid forecasts

 
Figure 6: Hybrid forecasts and actual values of out-of-sample. 
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 Table 3 exhibits the out-of-sample MSE and MAE adherence statistics 

regarding the forecasts of competing predictive methods; and the proposed WHF 

method for the time series of exchange rate. 

Table 3: MAE and MSE of out-of-sample values exchange rate time series. 

REFERENCES METHODS 
52 steps-ahead 

MSE MAE 

(ZHANG, 2003) 
ARIMA 4.52977x10-5 0.005397 
ANN 4.52657x10-5 0.0052513 

Hybrid 4.35907x10-5 0.0051212 

(KHASHEI; BIJARI, 2011) ANN/ARIMA 3.64774x10-5 0.0049691 

 Proposed WHF 4.23 x10-6 0.000907 

Source: The authors. 

 The necessary information to application of the proposed method for Canadian 

lynx time series is shown in Table 4. 

Table 4: Models and parameters to Canadian lynx methodology. 
 Variable Values 

ARIMA 

  

  

  

 

 

Adaptative 

Parameters 

  0.998526 

  1.001407 

  0.990531 

Source: The authors. 

 The Canadian lynx error was decomposed by means of a wavelet 

decomposition of level 2, with Haar orthonormal basis. The ANN input patterns has 

five observation of each decomposition and the hidden layer has five neurons. The 

results can be seen in Figure 7 and the adherence statistics in Table 5  
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Figure 7: Hybrid forecasts and actual values of out-of-sample. 

Table 5: MAE and MSE of out-of-sample values Canadian lynx time series.  

REFERENCES METHODS 
14 steps-ahead 

MSE MAE 

Zhang (2003) 
ARIMA 0.020486 0.112255 
ANN 0.020466 0.112109 

Hybrid 0.017233 0.103972 
Khashei e Bijari (2011) ANN/ARIMA 0.00999 0.085055 
(ADHIKARI; AGRAWAL, 
2013) 

SVM 0.05267 - 
Ensemble ANN 0.00715 - 

 Proposed WHF 0.000981 0.018828 
Source: The authors. 

5. CONCLUSIONS 

 Comparisons in Table 1, 3 and 5 clearly proved that the proposed WHF 

method achieved remarkably better results than any of other predictive methods cited 

in this paper, on out-of-sample performance measures.  

 According to Figure 5, 6 and 7, the observed values and the predictions 

produced by the proposed method over the out-of-sample period are strongly 

correlated, meaning that a high predictive power was achieved in the Sunspot, 

Exchange rate and Canadian lynx data application.  

 It is also worth pointing out that despite the relative complexity of the 

mathematical techniques that integrate the proposed methodology, described in 

Section 2, its implementation is indeed relatively straightforward with use of 

appropriate software such as E-Views 8 and MATLAB R2013a software. 
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