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ABSTRACT 

Many torque carrying members have circular sections such as shafts. 

However, there are certain structural members like automotive chasis 

frames, cross members and machine frames which are often 

subjected to twisting loads and their cross sections are non-circular. 

Several methods were developed to analyze such sections such as 

Saint Venant’s semi inverse method, Prandtl’s elastic membrane 

analogy...etc. In this paper, the second order partial differential stress 

function equation for non-circular torsional members is applied on a 

rectangular section for different b/h (height /width of section) values 

and the solutions for maximum torsional shear stress are found by 

employing second order finite difference method. The results are 

compared to the results obtained from commercial finite element 

software (ANSYS version 10 of ANSYS Inc. which is the acronym for 

Analysis system) and by direct solution of the stress function equation 

using analytical correlations available for rectangular sections. The 

results obtained by different approaches are in close congruence with 

a percentage deviation of only 3.22. It is observed that, in 

implementing second order finite difference scheme, the error in 

estimating stress is proportional to S2. Where “S” is the grid size. 
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1. INTRODUCTION 

 Simple torsion formulae applicable for circular sections cannot be applied 

directly to irregular sections as warping of sections should be considered due to 

uneven distribution of area around their axes of rotation. Saint-Venant (SINGH, 

2013) presented stress correlations for irregular shaped members subjected to 

torsion by considering warping effect.  

 Prandtl (BORESI; SCHMIDT, 2014) developed membrane analogy for non-

regular sections subjected to torsion. In this, a homogenous membrane is 

considered which is supported at the edges having same outline as the cross section 

of twisted bar and is subjected to uniform tension at the edges along with uniform 

lateral pressure per unit area of the membrane.  

 Lord Kelvin (UGURAL; FENSTER, 2003) presented hydrodynamic analogy 

based on similarities between torsional stress function and stream function 

governing motion of ideal irrotational fluids contained in a vessel having same cross 

section as that of the twisted bar. This analogy is especially useful for determining 

stress concentrations developed at sharp corners and notches in irregular shaped 

sections.  

 NewChen (1999) presented differential quadrature method. In this method a 

new discretization scheme is proposed for any generic problem with arbitrary 

domain. According to this method, a global algebraic system of equations can be 

developed by assembling all the discretized elements.  

 Turken, Kadıoğlu and Ataoğlu (2002) proposed a solution to torsion of 

irregular sectioned bars using boundary element method. In this method the 

boundary is divided into linear elements and the integral equation for torsion is 

reduced to a system of linear algebraic equations.  Unlike in case of regular circular 

sections, exact numerical solutions to torsional loads are not available for irregular 

shaped sections.  

 However, Boresi and Chong (2010) presented approximate solutions to non-

circular boundaries by solving the two dimensional harmonic and biharmonic stress 

function equations using Finite difference schemes. Strikwerda (2004) provided 

detailed introduction to various finite difference schemes such as Newton’s forward 
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difference formula, central difference formula…etc, for various univariate, bivariate 

and multi variant functions to obtain numerical solutions to partial differential 

equations.  

 Ward (1998) provided solutions to linear and second order finite difference 

schemes with variable coefficients. Chatopadhyaya (2013) presented and discussed 

the warping effects in various non circular geometries subjected to twisting loads in 

an elaborative manner from a series of experimental results.  

 In this work, a structural member of rectangular section is analyzed for 

different (b/h) (Section height / width) values using second order finite difference 

scheme and the results obtained are compared to the results obtained from (ANSYS 

version 10 of ANSYS Inc which is the acronym for Analysis system) finite element 

software and from the analytical correlations developed for non-circular sections 

having regular geometry. Matweb provided necessary mechanical and physical 

properties of chosen structural steel for modeling the member. 

2. PROBLEM DESCRIPTION AND ANALYSIS 

In the present work, a rectangular member with b/h ratios 1.0, 1.5, 2.0, 2.5, 3.0 is 

considered. The member is made of EN 24 T structural steel with modulus of 

elasticity 200 Gpa, shear modulus 76.92 Gpa and Poisson’s ratio 0.3. A torque of 

2500 N-mm is applied by constraining one end and the analysis is carried out by 

using Prandtl’s Analytical equations, Finite difference method and Ansys.  

3. ANALYTICAL CORRELATIONS 

Recalling the Prandtl’s stress function 

 
2 2G                                                                     (1) 

Where   
2 2

2
2 2x y

 
  

 
 

and   is the stress function which is zero around the periphery of the section for 

equilibrium. Also, from Prandtls membrane analogy for rectangular section  

2
b h

b h

T dxdy GJ 
 

                                                                                  (2)  

 For the rectangular section shown in Figure 1, the stress function takes the 

following form 
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   2 2 ,G x h V x y                                                             (3)         

 
                                                                                  

 
Fig 1: Rectangular Section 

 
 
where   

 2 2

0 for x h
V

G x h for y b

     
                                                                 (4) 

Where V is a shear stress function in x and y. Employing method of 

separation of variables, the shear function V is expressed as: 

 
( ) ( )V f x g y                                                                                        (5) 

 
First of equations 4 and equation 5 yields: 

 
      2 ( ) ( ) ( ) ( ) 0V g y f x g y f x                                                                (6) 
 

Prandtl found the following closed form solutions for rectangular sections by 

solving equation no 6. The solution methodology was also extended to other regular 

sections like equilateral triangle and ellipse by selecting appropriate equation form 

for Ø. 

max 2
2 (2 )(2 )

T

K b h


 
  
 

                                                      (7) 

 
 

Where T=GJθ and    3

1 2 2J K b h  

Where   

1
2

K
K

K
                                                                                                          (8) 
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1 tanh
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



     
  

                                                               (9) 

 
and   

2
21,3,5,....

8 1
1

cosh
2

n

K
n b

n
h
 

 
 

   
 
 

                                                                         (10)  

 
Table 1 shows the values of torsional parameters k1 and k2 estimated for various b/h 

values. 

 
Table1: Torsion Parameters for Rectangular section 

b/h 1.0 1.5 2.0 2.5 3.0 

K1 0.141 0.196 0.229 0.249 0.263 

K2 0.208 0.231 0.246 0.256 0.267 

4. FINITE DIFFERENCE METHOD 

The section of the member under consideration for b/h=1 is discretized as 

shown in Figure 2. 

Taking b=10mm and h=10mm, the grid size S is chosen as 10/4 or 2.5mm. 

Recalling the second order finite difference equations for bi variate functions, (i,e) for 

functions of x and y variables we have: 

 

  

  

2

2 2

2

2 2

( , ) 2 ( , ) ( , )
,

( , ) 2 ( , ) ( , )
,

F x h y f x y f x h y
f x y

x h

F x k y f x y f x k y
f x y

y k

    

    


                                             (11) 

 

 
Fig 2: Finite grid for square section (b/h=1) 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

808

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 6, n. 3, July - September 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i3.323 

 
 

From Prandtl’s analogy, the stress function at boundary shown in figure 2 is 

zero and exists throughout the region R shown in figure 2 except at the boundary. 

Mathematically,    
2 2

2
2 2

2G
x y

  
  

       
  on region defined by R with in 

the boundary.     =0 on the boundary of the member defined by C. Due to symmetry 

of the section shown in figure2, only the stresses at the three node points are 

considered. As Ø is function of x and y, equations shown by 11 are applied to the 

present problem as follows. 

 

 2
1, , 1,

2 2

2i j i j i j

x S

     



  

 

 2
, 1 , , 1

2 2

2i j i j i j

y S

     



 

 
Where h=k= S and i ,j denote nodal positions in x and y directions. Therefore, 

 

   
2 2

2
1, 1, , , 1 , 12 2 2

1
, 2 4i j i j i j i j i ji j G

x y S

          

  
            

                     (12) 

 
Due to symmetry only one quarter of the region R shown in Figure 2 is 

considered for analysis. Where i , j shown in equation 12 denote the node point in 

region R of Figure 2. Due to symmetry of node position 2 with respect to node 

position 1, we have F1,2 = F2,1.  Here, it must be noted that the function Ø is 

analogous to F shown in Figure 2. The following equations are deduced for nodal 

positions (1,1), (1,2) and (2,2). 

2
2,1 2,1 1,1 2,1 2,11, 1; 4 2i j F F F F F G S                                                              (13) 

(  Ø0,1  and Ø1,0 denote F2,1 and Ø1,1 denotes F1,1) 
2

2,2 2,2 2,1 1,11, 2; 4 0 2i j F F F F G S                                                                (14) 

 (j+1 denotes boundary C, therefore 5th term is zero) 

2
2,1 2,2 2,12, 2; 0 4 0 2i j F F F G S                                                               (15) 

 (i+1, j+1 denote boundary C, therefore, 2nd & 5th term are zero) 

Equations 13 to 15 can be expressed as shown by equations 16, 17 and 18. 

2
1,1 2,14 4 2F F G S                                                                                              (16) 
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2
1,1 2,1 2,24 2 2F F F G S                                                                           (17) 

2
2,1 2,22 4 2F F G S                                                                                            (18) 

Solving equations 16 to 18 we have the following solutions for stresses. 

2
1,1

2
2,1

2
2,2

2.250

1.750

1.375

F G S

F G S

F G S













                                                                                  (19) 

For one quarter of region R, the maximum shear stress occurs at i=3 and j=1, 

That is at x=b/2, y=0 position For the entire region R. 

max x

 

  

 

Using fourth order backward difference formula  τmax may be approximated as: 

 
  
                                     (20)                         

 

For i=3, j=1  equation 20 becomes: 

 max 2,1 1,1 2,1
3,1

1
0 32 72 96 0

24
F F F

x S

          
                                              (21) 

From equations 19 and 20    τmax = 2.583GθS = 0.646Gθb 

5. FINITE ELEMENT METHOD 

Ansys 10 version of ANSYS Inc. is used to model and analyze the present 

problem. The section is modeled using SOLID 45 brick elements. The entire section 

is meshed with uniform map mesh of initial element size 10. Torque of 2500 N-mm is 

applied to the model using a pilot node modeled outside the model. Figure 3 shows 

the finite element model of the rectangular section for b/h=1.  

 4, 3, 2, 1, .
,

1
6 32 72 96 50

24 i j i j i j i j i j
i j

F F F F F
x S


   

        
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Fig 3: FEM model of Rectangular plate for b/h=1 

6. RESULTS & DISCUSSION  

Figures 4 and 5 show the maximum shear stress and angle of twist for the 

rectangular section with b/h=1. The variations in maximum angle of twists and 

maximum shear stress for different b/h values obtained from ANSYS, Finite 

Difference Method and analytical equations are shown in tables 2 and 3 respectively.  

The magnitudes of maximum shear stress and angle of twist reduced with 

increase in the ratio b/h as seen in tables 2 and 3.  From tables 2 and 3 it can be 

observed that the percentage variations in the results obtained Finite difference and 

Ansys are found to be minimal. This may be attributed to the fact that, both methods 

employ the concept of discretization of the domain.  

 
Fig 4: xy-shear plot for the rectangular section with b/h=1 
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Fig 5: Angle of twist about Z-axis for section with b/h=1 

Table 2: Maximum Shear stress variation for different b/h values 
                                Maximum Shear Stress in N/mm2 
b/h 1.0 1.5 2.0 2.5 3.0 
ANSYS 11.10 7.002 4.967 3.521 2.906 
FINITE DIFFERENCE METHOD 11.45 7.342 4.993 3.648 2.997 
ANALYTICAL CORRELATIONS 11.92 7.517 5.081 3.906 3.121 

 
Table 3: Maximum variation of angle of twist for different b/h values 

                                              Maximum Angle of twist in radians 

b/h 1.0 1.5 2.0 2.5 3.0 
ANSYS 0.48E-04 0.12E-04 0.063E-04 0.0291E-04 0.0094E-04 
FINITE DIFFERENCE METHOD 0.427E-04 0.109E-04 0.060E-04 0.033E-04 0.0099E-04 
ANALYTICAL CORRELATIONS 0.402E-04 0.099E-04 0.058E-04 0.036E-04 0.0101E-04 

7. CONCLUSIONS 

A structural member of rectangular section with different b/h values is 

analyzed using ANSYS, Finite difference method and Prandtl’s closed form solutions 

for regular non-circular sections. The following conclusions are drawn. 

 The accuracy of finite difference method is influenced by grid size S. 

 The maximum shear stress values found for three different element sizes i.e. 

(10, 8 and 6) were almost identical showing negligible effect of mesh density. 

 Instead of second order finite difference formulae, higher order finite 

difference formulae can also be used for better accuracy and for minimizing 

error, but the process becomes cumbersome. 
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 The concentration of maximum shear stress is at i=3,j=1 according to finite 

difference method and also  as observed from Figure 4. 
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