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ABSTRACT 

Scheduling is a key factor for operations management as well as for 

business success. From industrial Job-shop Scheduling problems 

(JSSP), many optimization challenges have emerged since de 1960s 

when improvements have been continuously required such as 

bottlenecks allocation, lead-time reductions and reducing response 

time to requests.  With this in perspective, this work aims to discuss 3 

different optimization models for minimizing Makespan. Those 3 

models were applied on 17 classical problems of examples JSSP and 

produced different outputs.  The first model resorts on Mixed and 

Integer Programming (MIP) and it resulted on optimizing 60% of the 

studied problems. The other models were based on Constraint 

Programming (CP) and approached the problem in two different ways: 

a) model CP1 is a standard IBM algorithm whereof restrictions have 

an interval structure that fail to solve 53% of the proposed instances, 

b) Model CP-2 approaches the problem with disjunctive constraints 

and optimized 88% of the instances. In this work, each model is 

individually analyzed and then compared considering: i) Optimization 

success performance, ii) Computational processing time, iii) Greatest 

Resource Utilization and, iv) Minimum Work-in-process Inventory. 

Results demonstrated that CP-2 presented best results on criteria i 

and ii, but MIP was superior on criteria iii and iv and those findings are 
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discussed at the final section of this work. 

Keywords: Constraint Programming, Mixed an Integer Programming, Job-shop 

Scheduling Problem, Makespan minimization 

1. INTRODUCTION 

 A typical Job-shop consists on a high-mix low-volume (HMLV) production flow, 

which simultaneously requires process of operations by the use of shared resources.  

In this manufacturing context, scheduling and sequencing operations became critical 

to the efficient use of both time and the machinery involved in a certain production 

system.   

 In this context  scheduling is a well-known problem that deals with the efficient 

allocation of resources in order to perform a collection of tasks given a certain time 

range (DUMITRESCU; STOEAN; STOEAN, 2007).  Thus, one of the challenges 

related to those issues is to reduce lead time by minimizing the amount jobs work in 

progress (WIP inventories). Then accordingly to Boushaala et al. (2012) and French 

(1982), a job-shop scheduling problem (JSSP) is complex and hard to be solved 

because of the following reasons:   

i. Each job requires a different sequence of operations to be completed, 

which generates different jobs under processing simultaneously on different 

machines, 

ii. Processing times for all jobs are known and constant, 

iii. All jobs are available for processing at time zero, 

iv. Machine absences are not allowed and each machine is continuously 

available for production, 

v. There is only one machine of each type in the shop, 

vi. Each machine can perform only one operation at a time on any job, 

vii. An operation of a job cannot be performed until its preceding operations are 

completed 

viii. Transportation time between machines is zero, 

ix. A job does not visit the same machine twice.  
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x. There is no restriction on queue length for any machine.  

xi. There are no limiting resources other than machines/workstations  

xii. The machines are not identical and perform different operations 

xiii. Operation cannot be interrupted, 

xiv. An operation of a job can be performed by only one machine.  

xv. There are capacity limitations which lead to bottleneck problems, 

xvi. Due dates must be observed together with the completion times. 

 This work proposes the optimization on 17 classical Job-shop Scheduling 

problems (JSSP), under two perspectives: a) 1 Mixed Integer Programming model 

(MIP), and b) 2 Constraint Programming (CP) Models.  Both of those techniques 

were applied aiming to minimize the makespan by sequencing the permutation of 

Jobs on the machines regarding the necessary order of processing.  

 Each model was set to obtain the best possible result given a range of 3600 

sec, and after performing the simulations those 3 models performances are analyzed 

and commented. 

 Data used on this work was partially extracted from the work of Applegate and 

Cook (1991) and (BEASLY, 2005) and the approach to solve them was based on the 

work of  Fisher (1973), Applegate and Cook (1991),  Zhou (1996) and also by 

Mastrolilli (2000). Despites the reference works, this article does not aim to reproduce 

exactly the same results but to discuss the classical mathematical JSSP formulation 

and the computational solution obtained at IBM ILOG CPLEX environment under the 

light of Linear Programming perspective.  

 Then, on the next sections, a brief review of Linear Programming, Mixed 

Integer Programming and Constraint Programming will be presented, followed by 

JSSP mathematical model statement. 

2. DEFINITIONS 

2.1. A Brief Overview of Linear Programing 

 Linear Programming (LP) was first proposed by George B. Dantzig in 1947 as 

resource to the need of solving complex planning problems concerning to warlike 

operations during the World War II. LP is one of the most famous features of 
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Mathematical Programming, the later is defined by Dave, Dantzig and Thapa (1998) 

as follows:  

“branch of mathematics dealing with techniques for maximizing or minimizing an 

objective function subject to linear, nonlinear, and integer constraints on the 

variables”  

 This fundamental concept is important to define the range of this study as the 

initial step taken to optimize the JSSP was to build an integer optimization model, 

composed by some of those elements mentioned above. 

 Continuing with the definitions, the  Linear programming (LP) can be viewed 

as part of a great revolutionary development, which has given humankind the ability 

to state general goals and to lay out a path of detailed decisions to take in order to 

“best” achieve its goals when faced with practical situations of great complexity 

(DANTZIG, 2002).  In order to be linear, an optimization model must satisfy 3 

assumptions: proportionality, nonnegativity and additivity, which are described on 

Table 1. 

Table 1: Conditions to linearity 
Assumption 1: Proportionality 

The quantities of flow of various items into or out the activity are 
always proportion to the activity levels. i.e.: it concerns to 
contribution per unit of each decision variable to the objective 
function.  

Assumption 2: Additivity 

Relates to the relationships among the decision variables. For 
each item it is required that the total amount specified by the 
system as a whole equals to the sum of the amounts flowing into 
the various activities minus the total amount flowing out. i.e.:  
The total value of the objective function equals the sum of the 
contributions of each variable to it. 

Assumption 3: Nonnegativity  

While any positive multiple of an activity is possible, negative 
quantities of activities are not. Ex.: A negative quantity of 
delivery packages cannot be negative. 

Source: Adapted from DANTZIG (1996) 

 Summarizing it in a more scientific verbiage,  Linear programming (LP) 

consists on the mathematical programming technique applied for finding optimal 

solutions to problems expressed in linear equations and inequalities (BRADLEY; 
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HAX; MAGNANTI, 1977). Generally LP aims is to find a vector  maximizing 

(or minimizing) the value of a given linear function among all vectors  that 

satisfy a given system of linear equations and inequalities. The linear function to be 

maximized, or sometimes minimized, is called the objective function and it presents 

the following form (MATOUSEK; GARTNER, 2007): 

C T X = c 1 x 1 + · · · + c n x n 

 Where,  is a given vector  

 Continuing, those linear equations and inequalities in the linear program are 

called constraints and a linear program is often written using matrices and vectors, in 

a way similar to the notation AX = b for a system of linear equations in linear algebra. 

Therefore, linear programs are problems that can be expressed in canonical form: 

Max C T X (1)

Subject to:  

A X  ≤  b (2)

X ≥ 0 (3)

The standard form of this kind of problem is: 

 

(4)

Subject to  

 

(5)

 

(6)

 

(7)

 The way usually pursued to solve such problems is the Simplex Method, which 

was introduced in the late 1940s,  simplex evaluates from vertex to vertex on the 

boundary of the feasible polygon gradually improving  the objective function until an 

optimal solution is found - or it is established that no solution exists (MATOUSEK; 

GARTNER, 2007). It is not the aim of this work to discuss step by step the methods to 

solve Linear Programs – even though Simplex method is very important to solve real 

world optimization problems. Thus, in order to obtain a detailed explanation of how 
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solve many types of LP trough simplex or graphic method see bradley; Hax and 

Magnanti (1977) and Taha, (2007). 

 Once presented a quick overview of Linear programming, on subsection 2.2 

the main definitions of mixed and integer programming are briefly presented. 

2.2. Basic definitions of MIP 

 Mixed and integer programming is a part of mathematical programming 

dedicated to solve problems which require that the variables must be integers 

numbers. i.e.  {0, 1, 2, 3,…, n}. Therefore, it focuses on discrete optimization 

problems (KAUFMANN, 1977). It is noteworthy that most of the integer problems are 

complex to be solved as the best solution with integer values of is not always 

obtained by taking the maximal solution of the program for continuous values and by 

then suppressing the decimal portion of it.  

 There are plenty of important issues that can be  formulated as integer 

programming problems and solved by the use of the simplex method,  such as i) 

Scheduling Problems (VANDERBEI, 2008). (e.g.: Equipment Scheduling and 

personnel scheduling), ii) The Traveling Salesman Problem, and ii) Fixed Costs 

problems. In the case of the examples i, ii, and iii, they present as property that the 

integer decision variables are binary.  Because of the characteristics described 

above, the standard integer programming problem is define as: 

Max C T X (8) 

Subject to:  

A X  ≤  b (9) 

X ≥ 0 (10)

  (11)

 However, for problems in which the decision variables may assume any 

nonnegative integer value, it is necessary to resort to techniques such as the branch-

and-bound method. Complementarily, that there is no single technique for solving 

integer programs and because of that a certain number of procedures have been 

developed for this purpose. They are broadly classified in 3 groups of three 

approaches: 
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i) Enumeration techniques, including the branch-and-bound procedure,  

ii) Cutting-plane techniques and,  

iii) Group-theoretic techniques. The first item on the list consists on the 

main resource applied by IBM ILOG CPLEX and because of the 

relevance of this work, it is important to present further explanations 

about it. For more detail about item ii and iii, see Bradley; Hax; 

Magnanti (1977) and Vanderbei (1998). 

 The Branch-and-bound intends solve an expected large number of correlated 

LP problems at the search for an optimal integer solution. Marie-France Derhy 

described this method as based on the principle that the total set of feasible solutions 

can be portioned into smaller subsets of solutions (DERHY, 2010), such as shown on 

Figure 1. 

 
Figure 1- B&B illustrated procedure. 

Source: Gurobi Optimization, (2014) 

 Continuing with the description, then the smaller subsets are evaluated 

systematically until the best solution is found. Whenever this method is used it is 

combined to a continuous solution method such as the simplex.  

 However, as an integer linear program is a LP only constrained by , in a 

minimization problem, the value of the objective function at the linear-program 

optimum will always be a lower bound on the optimal integer-programming objective, 

while any other integer feasible point is always a upper bound on the optimal linear-

program objective value (BRADLEY, HAX and MAGNANTI, 1977). This process is 

repeatedly upgraded until an optimal solution if found or until every node is whacked.  

With this in perspective, it is important to present two more fundamental concepts: 
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 GAP: the difference between the current upper-bounds (UB) and lower-

bounds (LB) is the gap 

 INTEGER OPTIMAL: when [UB- LB] ÷ LB = 0, the integer optimal is achieved 

[6]. 

 Although it presents limitations, MIP has proved to be very effective in 

modeling and solving both theoretical and practical optimization problems. 

Additionally, MIP consists on a special case of CP, despites the former represents a 

very important case of CP where all constraints and the objective function are 

required to be linear and only integer or real-valued domains are feasible accordingly 

to Salvagni(2008a) and Barták, (1999). With that idea on focus and considering that 

the second part of this work betakes Constrain Programming for Job-shop 

Scheduling Problems, the section is dedicated to present definitions on CP and its 

main features. 

2.3. Basic Definitions of Constraint Programming 

 This section aims to present definitions related to constraint programming as 

well as briefly listing the main applications mentioned on literature.  Literature Review 

on Constraint Programming is wide, stating in 1963 with the concept of general 

logical constraints by Sutherland in 1963 at his interactive drawing system Sketchpad 

(ACHTERBERG et al., 2008a). Later, during the 1970’s further definitions of 

Constraint logic programming emerged in the artificial intelligence studies. 

Thereafter, in the following decade the constraint solving was incorporated into logic 

programming –  when the work of Jaffart and Lassez(1987); Colmerauer (1990), 

among others gained prominence. 

 Constraint Programming (CP) is the study of computational systems based on 

constraints. It is an emergent paradigm to declarative model and e ectively solve 

large, often combinatorial, optimization problems Salvagni(2008a).  Then, because 

CP builds upon stating constraints and solving them, in this section some definitions 

related to this field are presented for later comparison to MIP.  Summarizing it, a 

constraint program definition is a triple (BERTHOLD, NATURWISSENSCHAFTEN, 

2008):  

 CP = and consists of solving (CP)  with 

the set of domains   = × . . . ×  , the constraint set  = {C 1, … , C m }, and an 
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objective function .  We denote the set of feasible solutions by  

 . A CP where all domains   D are finite is called a 

finite domain constraint program (CP (FD)). 

 Complementing the definition, a constraint is simply a logical relation among several 

unknowns (or variables), each taking a value in a given domain. Furthermore about 

constraints (BARTÁK, 1999) :  

i) They can specify partial information, i.e. there is no obligation of previously 

declaring variables value,  

ii) Constraints are non-directional and they are declarative, i.e. they specify what 

relationship must hold without specifying a computational procedure to enforce 

that relationship,  

iii) They possess additive propriety. Therefore, the order of imposition of 

constraints is irrelevant as the conjunction of constraints is in effect,  

iv) Usually, constraints from the constraint store share variables.  

 CP has been successfully applied to a high variety of knowledge fields such as 

project management, whether industry or hospital scheduling. Further applications 

exemplified by Wallace (1996), such as  Circuit Checking, Real-time control systems.  

2.3.1. Constrain Programming Techniques 

 Constraint problems Techniques (solving technologies) can usually be 

categorized into 2 broad groups  (BARTÁK, 1999): Constraint Satisfaction and 

Constraint solving. 

 The first group (Constraint Satisfaction) possesses strong relationship with 

Artificial Intelligence (AI) for solving Constraint Satisfaction Problems (CSP) which 

are stated as:  a set of variables X={x1 ,...,xn }, where for each  variable  xi there is a  

finite  set Domain (Di) of  possible values. Also, there is a set of constraints that 

restrict the values that the variables can simultaneously take (LITTLE, TSANG, 

1995). The possible values of the domain can whether be numeric or not, and in the 

case of D assume numeric values, there is no obligation for them to be integer. 

Therefore, the solution of a CSP will be accomplished when every variable assumes 

on value from the domain and all constraint are simultaneously satisfied. 
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 A CSP allows multiple solutions depending on the goals can various solutions 

or only one can be found. Yet, is it still possible to obtain optimal solutions or even 

only a desirable one.  In order to satisfy the constraints of such problems, following 

approaches are suggested (ACHTERBERG et al., 2008a): 

 Consistence Techniques, 

 Constraint propagation, 

 Stochastic and Heuristics algorithms 

 Systematic Search 

 Moving forward, the Constraint solving category covers the use of optimization 

based algorithms and mathematical techniques. A Constraint Satisfaction 

Optimization Problems (CSOP) consists on the same the definition of a standard  

constraint  satisfaction  problem (CSP) plus the requirement of finding optimal 

solutions (LITTLE, TSANG, 1995).  Therefore the solution must comply with a 

previously defined objective function and at the same time it satisfies all the 

constraints together. In that context, the Branch and Bound (B&B) method is the 

most recurrent resource, which can be applied to the CSOP and to MIP problems as 

well (BARTÁK, 1999). 

  According to the same author, the B&B  requires an  heuristic function for 

mapping the partial labelling to a numerical  value and in the case of a minimization 

problem such as the ones studied in this work, it  represents  an under  estimate of 

the objective function for the best complete labelling achieved.  

 Thus, this kind of model searches for solutions in a depth first manner and 

behaves like chronological Backtracking1 except that as soon as a value is assigned 

to the variable, the value of heuristic function for the labelling is computed. If this  

value  exceeds  the  bound,  then  the  sub-tree under  the  current  partial  labelling  

is  pruned immediately. Another way to address that type of problem is the use of 

Stochastic and Heuristics algorithms such as Genetic algorithms (GAs). GAs 

represent a class of stochastic search based on the concept of the evolution in 

                                                 
1 “Backtracking” is a problem solving method according to which one systematically searches for 

one or all solutions to a problem by repeatedly trying to extend an approximate solution in all possible ways 

(FOKKINGA, 2004). 
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nature which successfully has been applied to combinatorial optimization problems 

such: 

i) the travelling salesman problem (TSP), 

ii) the quadratic assignment problem (QAP) and , 

iii) Scheduling Problems. 

 The plurality of constraint programming techniques is evident, as well as large 

range of applications. However, it is not the objective of this study to conduct a broad 

theoretical review on each technique related to this area of knowledge.  In fact, it is 

noteworthy to recapitulate that this works intends to present a comparison between 

the different results obtained through a MIP model and several CP models aiming to 

optimize 17 hard Job-shop problems.  

 In this sense it is relevant to mention the work of Berthold and 

Naturwissenschaften (2008), in which it is presented the paradigm of Constraint 

Integer Programming (CIP). This author defends that MIP can be approached as a 

specific case of Constraint Programming and therefore, it is possible to integrate 

them. Aiming to do this, the author establishes that most problems of MIP – including 

the Job-shop Scheduling problems – can be treated as a Constraint Integer problem 

as long as the constraints are linear. Therefore, by definition, a Constraint Integer 

Programming (CIP) consists on solving:  

CIP = (  
(12) 

where: CIP   c* = min {cTx |   (x) , xj ∈  for all J ∈ I } 
(13) 

 And   = {C1…Cm} is a is a finite set of constraints Ci: n →{0,1}, i = 1, …, m, 

a subset I  N = {1,…, n}, of a variable index set and an objective function vector c  

n . 

 A CIP must fulfil the conditions below: 

 

  

 

(14) 
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With 

C: = N \ I, A (15) 

 

 The first constraint (equation 10) guarantees linearity to the problem after 

fixing the integer variables therefore, the problem can be solved by enumerating all 

values of the integer variables and solving the corresponding Linear Programs 

(BERTHOLD, NATURWISSENSCHAFTEN, 2008).  This new paradigm set MIP 

problem as CIP, which allowed Job-shop scheduling problems (among many others) 

to be solved with hybrid approaches. Another contribution of ACHTERBERG et al. 

(2008b) and Berthold and Naturwissenschaften (2008) consists on establishing a 

parallel on both techniques, which can be observed on Table 2. 

Table 2 –differences between MIP and CP  
Constraint Programming (CP) 

Domains of variables are (arbitrary) sets, 
Constraints are (arbitrary) subsets of domain space, 
High flexibility in modelling, natural but very general 
concept. 

Mixed Integer Programming (MIP) 

Domains are intervals in ℚ or   
Constraints and objective function are linear, 
Highly structured, specialized algorithms, restricted 
modelling 

Constraint Integer Programming (CIP) 

Linear objective function 
Arbitrary constraints, but fixing all integer variables always 
leaves LP (as in MIP) 

Source: adapted from ACHTERBERG et al. (2008b)

 Once presented main definitions that based this work, on the next section the 

proceedings of MIP study are presented, followed by the empirical study of CP. 

3. JSSP GENERAL STATEMENTS 

3.1. The objective function  

 Inputs of these JSSP consist on a set of Jn (jobs) x Mn (machines), where the 

due dates are not known, and there where specified two schedule decision criteria:  

i) Maximization of the number of jobs, 
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ii) Minimization of the makespan and, 

iii) J = finite set of jobs, J= {ji,….,jn}, 

iv) M = finite set of machines, M= {mi,….,mn} 

 For each j and m, let xjm be the starting time of a job j in machine m, and let 

Pjm be processing time of (j,m), where each Job possesses a predefined sequence 

of operations through the machines. 

 Also, every Jj at each Mm have a nonnegative integer processing time  (Pjm) 

and  the instant of a Jj enters into Mm to be process is denominated Xjm.   

 The objective of this problem consists on minimizing Makespan, which 

corresponds to the subtraction of completion time of last job and starting time of the 

first job (Cmax). Then, as the starting time of the first job must be the instant zero, the 

objective function corresponds to (APPLEGATE, COOK, 1991): 

Min  Z = Cmax - 0 (16) 

Cmax = Max Xjm+ Pjm 

 
(17) 

 Now that the objective function is defined, the declaration of the constraints is 

presented on the next section. 

3.2. Constraints 

 The constraints established for this problem are: 

Xjm ≥ 0   for all j ∈ J, m ∈ M (18)   

Xj(t)  ≥ Xj(t-1) + Pj(t-1)m  for all  t = 2,…,m (19)  

Xim ≥ Xjm+ Pjm or Xjm ≥ Xim + pim   

for all I, j ∈ J, m ∈ M 
(20) 

Zx ≥ Xj(t)  + Pj(t)m for all J ∈ J (21)  

 In order to solve this problem with the IBM ILOG CPLEX, a dummy variable 

was incorporated on constraint (5) so that this problem could be solved with MIP. The 

binary variable Ym (ij) assumes value one, whenever job i is scheduled on m before 

job j (7). 
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Xim ≥ Xjm+ Pjm + K. (1- Ym (ij)) , {Ym (ij)  ∈: 0≤ Y≤ 1} 

Or 

 Xjm ≥ Xim+ Pim + K. Ym (ij), {Ym (ij)  ∈: 0≤ Y≤ 1} for all I, j ∈ J, 

m ∈ M 

May K corresponds to some large constant. 

(22) 

 Summarizing, the model is:  {Min (16), Sub to (18), (20), (21) and(22) }. 

4. JSSP FORMULATIONS 

4.1. MIP formulation 

 After stating the mathematical model for the JSSP, in this subsection the MIP 

formulation to solve this problem is presented. 

Objective function Min Cmax  

Constraints for all I, j ∈ J, m ∈ M 

Nonnegative times: 

 Xjm ≥ 0   

 

 

(23) 

No-Preemption  

Xj(t)  ≥ Xj(t-1) + Pj(t-1)m  

for all  t = 2,…,m 

(24) 

Dummy Variable: 

Yji-1, ji ∈ {0,1}   

for all  j i-1  ∈  J > ji  ∈ J  

(25) 

Sequencing Criteria 

Xim ≥ Xjm+ Pjm + K. (1- Ym (ij))  

 Xjm ≥ Xim+ Pim + K. Ym (ij)  

 

(26) 

 L (sec):  Time limit: = 3.600 (27) 

 The objective function of this problem is consistent with equation (17), which is 

minimizing the completion time of all the jobs through finding the best sequencing. 

The constraints for this problem recall the Job-shop characteristics described on 

section one (items 1-14), which were translated to equations 23 to 26.  
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4.2. The CP -1 Model for JSSP  

 The CP -1 model consists on running the standard algorithm of IBM for default 

job-shop scheduling problems. This default model was conceived under the 

paradigm of setting discrete decision variables (processing intervals and sequencing 

machines) with the objective function of minimizing Makespan. For this kind of 

problem, IBM set the constraints according to the definitions of the Constraint 

Programming, and which are consequently aligned to the JSSP rules presented on 

section 1. After setting the constraints, the next step is to search for a satisfactory 

solutions, which is performed as illustrated on Figure 2. 

 
Figure 2: CP search process 

Source:OPL(2009) 

 This initial model, here called naïve, presents the formulation shown below: 

Objective function Min Makespan (28) 

Constraints 
No-Preemption : noOverlap  Tj,m (29) 

Process Sequencing: endBeforeStart (Ij,m -1,Ijm) (30) 

 L (sec):  Time limit: = 3.600 (31) 

Where: 

 

 

Tj,m = Tuple operation of j ∈ J, m ∈ M 

Ij,m = Interval in which j is under processing at m 
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 Eq.(28) does not differ from the other objective function previously discussed 

in section 3.1, but the constraints are presented with some differences: 

i) NoOverlap : this constraint is used to prevent intervals in a sequence from 

overlapping and (optionally) to enforce a minimal distance between 

consecutive intervals (IBM, 2014). 

ii) EndBeforeStart: this constraint states that the end of a given interval 

variable Ij,m -1  is necessarily less than or equal to the start of a given interval 

variable Ijm. (IBM, 2014). 

iii) TimeLimit (sec): the solutions search was originally limited per number of fails. 

However, for this study this parameter was changed to TimeLimit of 3600 sec. 

 That implies that this search is not guaranteed to return the optimal solution, 

but the best one found within the limit available (IBM, 2014).  

4.3. The CP -2 Model for JSSP  

 CP-2 model resembles definitions from section 3.1 and 3.2, from which is 

added the constraint of time limit Eq. (36). This proposition can be observed next. 

Objective function 
Min Cmax  

Cmax = Max Xjm+ Pjm  

(32) 

Constraints Nonnegative times: 

 Xjm ≥ 0   for all j ∈ J, m ∈ M 
(33) 

No-Preemption  

Xj(t)  ≥ Xj(t-1) + Pj(t-1)m   

for all  t = 2,…,m 

(34) 

Process Sequencing: 

Xim ≥ Xjm+ Pjm   Xjm ≥ Xim + pim   
(35) 

L (sec):  Time limit: = 3.600 (36) 

 The sequencing criteria for CP-2 model does not differ mathematically from 

the one presented on model MIP excepting for discharging the use of dummy 

variables and, of course, by the use of the CP solver. 
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4.4. experimental results  the test problem  

 Aiming to verify if the proposed models could successfully solve a JJSP, one 

short test problem was ran on IBM ILOG CPLEX for each model, before any attempt 

to run one of the hard proposed by (BEASLY, 2005).  

 This short problem was based on the JSSP description by i) Slack, Chambers 

and Johnston(2010), ii) (Boushaala et al., 2012)and French (1982) and it consists on 

a 3 jobs x 4 machines, in which, every job had to follow a predefined. The problem 

times and routes are presented on Table 3. 

Table 3: Problem to test the model 
Jobs Machine 

Sequence 
Processing Times in h 
(machine, job) 

0 0,1,2  P01=9, p11=10, p21=14 

1 1,0,3,2 p12=8, p02=5, p32=5, 
p22=6 

2 0,1,3 P03=9, p13=7,  p33=5 

 This problem required 48 seconds to be solved on a computer with processors 

4 Intel® Core™ i7-4700MQ and 8GB of RAM, and it presented the following results ( 

Table 4). 

Table 4: MIP test solution 
Test 
JSSP 

Size Optimal 
Cmax 

MIP 
Cmax 

GAP 
(%) 

D 

MIP 

3x4 39 

39 0 0 

CP1 39 - 0 

CP2 39 - 0 

D =  deviation from  best Cmax l %  2 

 The Cmax calculated through MIP matched the optimal solution and it is 

important to mention that the MIP model has reach optimality as the GAP calculated 

by IBM ILOG CPLEX equals to zero. With this in view, it can be inferred that the MIP 

model is functional and can be applied to more complex problems. 

                                                 
2  D  = [Cmax (model) - Cmax (optimal)] ÷ Cmax (optimal)  
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 Similarly to the model test performed on MIP, the results obtained though IBM 

default model CP-1 - here defined as naïve model - took 3 x 10-3 seconds to solve 

this problem and to find the best Cmax value.  

 Next, the CP-2 model is presented as an alternative to CP-1 model in the 

search for solutions. For testing Model CP2, the instance TEST was run in 1.05 

seconds until the best Cmax was found. 

 Thus, as every model presented in this section has shown capability to find 

optimal results for the JSS test problem, their application on hard problems was 

proceeded. The results of this final stage of work, can be observed on section Erro! 

Fonte de referência não encontrada.. 

 Moving forward, as the job-shop scheduling problems (JSSP) are both 

scheduling and sequencing problems it is important for the operations management 

to provide a way of viewing the sequencing and timing instantaneously. For that 

reason, the Gantt chart was chosen to illustrate the results obtained for this initial 

problem - Figure 3. 

 
Figure 3: Gantt chart for JSSP test 1 (machines x time) 

 The Gantt chart consists on a bar graphic which pictures the schedule of a 

certain set of operations in the appropriate sequence. Through this chart it is possible 

to observe both start and finish times of each operation at the jobs involved on the 

problem.  

 Those start and finish times were initially calculated via IBM ILOG CPLEX. 

But, in order to pedagogically illustrate this JSSP, the following discussion will be 

supported by the Gantt chart. 
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 Then, calculating the total waiting time of each job through the graph: J0 

presented no waiting time, efficiently flowing all long the processing. 

 J1 had 15h of waiting time from machine 1 to machine 0. J2 had the 

sequencing with higher and also more frequent waiting time among machines: M0 (9 

h), M1 (8h), M3 (1h). Therefore, the total waiting time for this job was 18 h. 

 Additionally, from the chart it is possible to extract the available time of each 

machine in this timeframe: i) M0 is free for 5hs between J2 and Job1, ii) M1 has 14h 

not occupied as between J0 and J2 there is 7hs  and once J2 leaves this machine 

there are still 6h free to be used, iii) M2 has 18hs unoccupied before J0 starts to be 

processed, iv) and M3 has 28h free before J1 starts to be processed and also 1hs 

between J1 and J2. 

 Still, it is relevant to expatiate that because the sequencing results of CP are 

not identical to the one obtained from MIP model, Figure 3 will suffice to illustrate the 

obtained sequencing results. Once this solution for the test problem presented no 

deviation from its optimal, the next step taken was to run further complex problems in 

order to observe how it fits them. 

5. EXPERIMENTAL ANALYSIS 

5.1. Studied instances 

 At this stage of work, there were selected 17 differently sized JSSP to be 

optimized by the algorithms written on IBM ILOG CPLEX.  The sizes of the chosen 

problems are presented on Table 5. 

Table 5: JSSP instances dimensions 
Problems Quantity Size 

LA06 1 15 X5

FT06 1 6X6 

LA01, LA 02, LA05, LA08, 
LA03, LA04 

6 10x5 

ABZ5, ABZ6,LA19,LA20, 
ORB2, ORB5, MT10 (FT10), 
ORB 1, ORB3 

9 10x10

 FT06 optimal value was published by Fisher and Thompson (1973) and the 

others were previously  published by Applegate and Cook (1991) and also 
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Zhou,(1996) and  with a different approach by Mastrolilli (2000).  The calculated 

Cmax, and their deviations from the optimal solution, which were obtained though 

models MIP, CP-1 and CP-2 are presented on Table 6. 

5.2. Experimental Results 

 The experimental results were organized in a way such as the interpretation of 

the reader was facilitated. Therefore: i) Colum Opt shows the  Optimal Cmax value 

for the problem, ii) Colum SMIP corresponds to the solution obtained by MIP model, 

iii) in the sequence, iv)SCP1 displays the solution btained by model CP-1, v) SCP2  

exhibit the solution obtained by model CP-2. Finally, every Colum containing the 

symbol vi) Dn, shows the deviation from optimal Cmax. Deviations were calculated 

taking as an example footnote 2, on page 227. 

Table 6: Results per model 

Instance Opt SMIP DMIP SCP1 D CP1 SCP2 D CP2 

ABZ5  1234 1238 - 1277 0,035 1239 0,004 
ABZ6 943 943 - 948 0,005 943 - 
FT06  55 55 - 55 0,000 55 - 
LA01 666 666 - 666 0,000 666 - 
LA02  655 655 - 662 0,011 655 - 
LA03  597 597 - 647 0,084 597 - 
LA04  590 590 - 655 0,110 590 - 
LA05 593 593 - 593 0,000 593 - 
LA06 902 926 0,03 1559 0,728 926 0,027 
LA08  863 863 - 863 0,000 863 - 
LA19 842 842 - 884 0,050 842 - 
LA20 887 887 - 934 0,053 902 0,017 
MT10 572 593 0,04 1062 0,857 937 0,638 
ORB1 1059 1102 0,04 1079 0,019 1077 0,179 
ORB2 860 888 0,03 907 0,055 888 0,032 
ORB3 930 1038 0,12 1067 0,147 1024 0,101 
ORB5 886 926 0,05 983 0,109 887 0,001 

Dmodel =  deviation from  best Cmax l % 

 Despites the limitation of time which was set in 3600 seconds for both models, 

the MIP achieved optimality on 6 problems: ABZ6, LA01, LA02, LA03, LA04, LA20.  

Other 4 problems were granted as optimized, but they presented small gaps3.    

                                                 
3 Tolerance: Problems with gaps between 0.1% and 10% on their solutions were 

considered nearly optimal.  
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 Concerning to those last problems, there should be a clarification: IBM ILOG is 

configured by default for a 10% tolerance on GAPS measure and that is why during 

the run of those 4 JSSP the algorithm was interrupted before 3600 sec. Those 

instances were: ORB01, ORB02, ORB03 and ORB05. 

 The CP-1 model presented the smaller time of solution processing, within a 

range from 0s03 sec (LA06) to 1,06 sec (ABZ06), with ORB 01 as an outlier (1390 

sec). In fact, none problem solution was interrupted before exceeding the time limit.  

However from 17 problems only 3 presented no deviation from the best Cmax value 

of literature review. Continuing with  CP-1 outputs, 6 instances presented solutions 

close to the target (optimal), with deviations inferior to 10%, which were :  ABZ5 , 

ABZ6 , LA03 , LA19, LA20, and ORB2. 

 Although the satisfactory results, some other instances presented the highest 

deviation from the desired Cmax value, among the 3 models, such as:  ORB3 

(0,147), LA04 (0,11), LA02 (0,11) ORB5 (0,11) and especially LA06 (0,728), MT10 

(0,856) that presented values superior than 70%. 

 Moving the analysis to model CP-2, the general processing time were much 

higher in comparison to its predecessor. The processing time range stands from 

0,005 (LA08) to 1926 (ORB01).  

 On the other hand, deviation from the target were much lower: 

i) There were successfully solved 9 problems:  with zero deviations from optimal 

value (ABZ6, FT06 , LA01, LA02 , LA03 , LA04 ,LA05, LA08 , LA19) and 

There were 6 problems solved with divergence between 4%  and 0,1%, see 

Table 6, 

ii) There are only 2 solutions with diversion higher than 10% from optimal, which 

are: ORB01 (0,17) and  MT10 (0,638). 

 At the stage of research, the standard model CP-1 was discharged as the best 

choice, because although it presented the best solving time, it failed to solve 53% of 

instances. Still, it was able to fully solve 3 problems: LA05, FT06 and LA01 as well as 

it nearly solved 35% of this set of problems4.  For that reason, the Gantt Charts of 

                                                 
4Tolerance for CP models: problems presenting deviations from optimal between 0.1% 

and 10% on their solutions were considered nearly optimal. 
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CP-1 as well as its processing time were suppressed of the next subsection, but it 

can be observed on the Attachment Section. 

 By the MIP processing, most problems were optimized (or at least nearly 

optimized) in less than 400 sec. However, ORB1, ORB3 and ORB5 have reached the 

time limit of 3600 with gaps superiors to 11%. Because the tolerance level of gaps 

was set on 10%, it was considered that these problems were not successfully solved. 

 Moving forward to CP-2 model, its processing times obtained were very much 

lower than the previous one, by solving 88% of instances under 500 sec.  The 

exceptions were ORB01 (1.926sec), OBR02 (871sec) and ORB03 (1.117sec), but 

notwithstanding the time, solutions presented deviations inferior to 10% on the first 2 

orbs. To observe all processing times, see Erro! Fonte de referência não 

encontrada.. 

 In terms of time performance and solving success, model CP -2 has 

demonstrated to be most adequate to solve this particular set of problems. However 

MIP model also presented satisfactory results. Due to the times and success rates of 

MIP and CP-2 models have been considered virtually equivalent, a further 

exploration of results were elaborated.  Thus, in the following subsection some 

further comments related to the operations management perspective are presented 

to aid the choice of the most appropriate model for the studied set of solutions. 

5.3. Complementary Analysis 

 This complementary analysis of the 2 selected models is illustrated with the 

example of instance FT06. This instance is a 6 x 6 system, with optimal Cmax = 55h.  

 
Figure 4: Gant chart for instance ft06 on MIP 
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Both models have arrived on the best results for its completion time, however the presented 

sequences differ from one another - differences on the sequencing can be observed on Figure 4 

and Figure 5. 

 
Figure 5: Gant chart for instance FT06 on CP-2 

 In other words, if only the initial criterion is maintained. (Min Cmax), both 

models can be considered equally eligible, but with subtle difference in accuracy 

between MIP and CP2. 

 For that reason, some other important performance issues were incorporated 

in to this study:  

i) Reducing Work-in-process and  

ii) Enlarging Resource Utilization (or reducing idle resources). There are many 

other performance criteria to guide decisions related to scheduling priority as 

defined by  Brown, Blackmon and Cousins (2011):  

iii) Level of customer service,  

iv) Due time,  

v) Factory efficiency.  

 The criteria chosen as a reference to support this section correspond i) & ii). 

Reducing work-in-process (WIP) and lead time stands out  as one of the most critical 

objectives of Operations Management, such as defined by  Slack, Nigel and 

chambers (2010) especially in job shop manufacturing.  

 The Work-in-process (WIP) inventories are goods at an intermediate stage 

between raw materials inputs to the process and finished goods. The design of the 

production  process  will  greatly  influence  the  level  of  work-in-process 

inventory(BROWN; BLACKMON; COUSINS, 2011). 
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Figure 6 – Job´S WIP on ft06 in a 55h cycle 

 Considering the definitions presented above, Figure 6 illustrates how much 

time Jobs stay as WIP inventories in the sequencing of MIP Vs CP-2 model. From 

that graph it can be observed that J0 spends 34% (18,7hs) of the cycle time waiting 

for being processed at MIP, and 24% (13,2h). Considering a tolerance level per job 

of 10% for WIP, j0 results cannot be considered efficient. Referring to J1, the total 

waiting time in both cases are underneath the tolerance level of 10%. Summarizing, if 

the average WIP of each model are compared MIP, presents the lower WIP inventory 

time (14,8h or 26% of the cycle time), while CP-2 puts jobs on hold for 21h  or 38% of 

the cycle time. 

 Maximizing (or at least) Enlarging the Greatest Resource Utilization (GRU) 

incurs on prioritizing sequences of activities that will result in a minimum idle time 

(ALHARKAN, 2005). That is also a measure of efficiency for many authors, as it 

attempts to minimize the waste of expensive means of production. 

 Thus, changing the perspective of the job for the machines, MIP sequencing 

also presents better performance in most of machines, with exception of M3 (Figure 

7). However, CP-2 also surpasses 50% of the cycle time with this machine idle for the 

same machine 

 
Figure 7 – machine´s idle time 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 235 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 6, n. 1, January - March 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i1.262 

 Considering the average time machines are idle, there can be noticed that MIP 

solution is more efficient than CP-2, because CP-2 put machines on idle on average 

17hs (that corresponds to  30% of 55hs ) while  MIP on average does not  allocate 

tasks to the machines for 13 hours ( 24,5%). Concluding this analysis, the evaluation 

of those two models leads to the following implications: 

 Considering the Objective function: Min Cmax 

 CP2- Model was considered the best model among three to solve this 

particular set of problems, as it successfully presented the optimal value at 88% of 

the studied instances as well as it fail to solve only one problem. In addition to that, 

this model has demonstrated the second best timing. 

 As a disadvantage, this model has shown inferior performance on reducing the 

WIP inventory and also on reducing idle machine times. 

 MIP model was considered the second best option because it presented a 

larger processing time, and because it successfully optimized 60% of the studied 

instances. This model also presented good (though not optimal solutions) for 23% of 

the JSSP and finally, it fail to optimize 12% of the problems. As an advantage, MIP model 

presented better performance at the use of machinery resources and also by presenting a 

shorter WIP inventory timing. 

 Once concluded the experimental analysis, the final considerations of this 

study are presented on Conclusions section. 

6. CONCLUSIONS  

 This work aimed to present a comparison among 3 optimizing models, which 

are 1 MIP model and 2 CP Model, both had as objective to optimize 17 classical hard 

job-shop scheduling problems.  

 Through the study of those problems, it has been proved that the 2 algorithm 

succeed on optimizing the majority of problems as well as they observed the 16 

premises of JSSP presented on section 1. 

 CP-2 has proven to be the most appropriate model to be faster on finding a 

close to optimal solution for 10X10 problems, while MIP was faster to find it on 10x5 

problems. 
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 Considering the computational processing time range of 3600sec, in spite of 

79% slower, MIP has demonstrate more accuracy of results then CP-2 in 82,35% of 

the studied problems. Therefore, it is evidenced the trade-off between response 

speed and accuracy between those 2 models. 

 Another analysis should be effectuated by a decision maker who wished to 

choose between MIP and CP algorithms: the performance criteria of a given 

productive system. Those trade-off analysis enter into the domain of Operations 

Strategy, which is not the focus of this work and because of that it is suggested  for 

the reader to see the work of Slack, Nigel and Lewis (2009) on the field of Operations 

Strategy. 

 As future works opportunities it is suggested to be taken a multi-criteria study 

aiming to simultaneously optimized Cmax, GRU and WIP or even any other 

performance criteria of Productive Systems in order to pursue better results.  Another 

possibility is to deconstruct this work and redo it with the use of heuristics techniques, 

which would require more sophisticated tools in the search for new solutions.  

 Finally, this work is concluded with the confidence of not only presenting 2 

functional Optimization algorithms for JSSP but also with certainty of having 

contributed to the demonstration of the many insights to the industrial management 

that MIP and CP can bring along. 
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