INVERSE MODELING OF THE STEWART FOOT

 

Adriana Comanescu

IFToMM, Romania

E-mail: adrianacomanescu@yahoo.com

 

Alexandra Rotaru

IFToMM, Romania

E-mail: alexandra.rotaru11@gmail.com

 

Liviu Marian Ungureanu

IFToMM, Romania

E-mail: ungureanu.liviu.marian@gmail.com

 

Florian Ion Tiberiu Petrescu

IFToMM, Romania

E-mail: fitpetrescu@gmail.com

 

Submission: 1/20/2021

Accept: 7/17/2021

 

ABSTRACT

The Stewart's leg is used today in the majority of parallel robotic systems, such as the Stewart platform, but also in many other types of mechanisms and kinematic chains, in order to operate them or to transmit motion. A special character in the study of robots is the study of inverse kinematics, with the help of which the map of the motor kinematic parameters necessary to obtain the trajectories imposed on the effector can be made. For this reason, in the proposed mechanism, we will present reverse kinematic modeling in this paper. The kinematic output parameters, ie the parameters of the foot and practically of the end effector, ie those of the point marked with T, will be determined for initiating the working algorithm with the help of logical functions, "If log(ical)", with the observation that here they play the role of input parameters; it is positioned as already specified in the inverse kinematics when the output is considered as input and the input as output. The logical functions used, as well as the entire calculation program used, were written in Math Cad.

Keywords: IFLOG; Math Cad; Stewart platform; Stewart's leg; Robot; Kinematics; Inverse kinematics

1.       INTRODUCTION

            The parallel structure system that formed the basis of one of the most studied and well-known parallel robots is the Gough platform from 1947. Described as a mechanism with a mobile platform connected to a fixed base by six arms of variable length, the Gough platform was used for testing tire wear in the most varied operating conditions. Since 1965, this parallel configuration (in a slightly modified form) has been proposed as a solution for the development of flight simulators by Stewart.

            Parallel structures can be classified into completely parallel structures, whose final effector is connected to the mobile platform by closed kinematic chains; and hybrid or mixed structures consisting of a combination of serial and parallel structures.

            The number of degrees of freedom (GDL) in a robot is the number of independent movements that a robot-type mechanism can perform. The total number of degrees of freedom of a body in space cannot exceed 6 (six). The degree of mobility of a robot can be understood as the number of motors that drive it.

            The final effector (a gripping mechanism) is the device mounted on the end of a manipulator that performs operations to hold the tool or the manipulated object. The workspace is the volume of points in the space where the final effector of a robot can be located.

            By the position of any object or point of the robot in question is meant the value of the linear coordinates in the three-dimensional space of the object (or the respective characteristic point).

            Orientation refers to the angular coordinates of an element (of the robot in question) according to the axes of the fixed coordinate system.

            Precision (Accuracy) is the ability of the robot to position itself in a certain position with a certain previously allowed limit error.

            Repeatability is the robot's ability to repeat its positioning when repetitive movements are required.

            Stability refers to the robot's ability to operate with as few oscillations as possible.

            A good dynamics of a robot is obtained when it is statically and dynamically balanced when it is positioned correctly and precisely, without oscillations, without vibrations and high noises, with relatively high speeds, in imposed repeatability conditions, and at the necessary work rhythm.

            The definition of a parallel robot is very broad: it can also include mechanisms with more actuation systems than the number of degrees of mobility, including the situation in which several robots work in cooperation.

            Parallel mechanisms have several main features: at least two kinematic chains support the final effector, and each of them contains at least one actuating element; the number of actuating elements is the same as the number of degrees of the mobility of the final effector; the robot's mobility becomes zero when the actuators are locked.

            The main advantages of parallel robots: they have very high stability even in critical positions occupied even during high-speed movement, so that the objects handled by them are always safe; positioning accuracy is extremely high; at least two of the kinematic chains allow the distribution of the load on them; the number of actuators is minimal; the number of sensors required for closed-loop control of the machine is minimal; if the actuators are locked, the parallel robot remains in the position reached the moment when it was locked, i.e. it will become unbalanced, or fall, or drop the manipulated object, as can happen with serial robots. For the most part, the balancing of these parallel systems is done automatically, from the construction, giving them in this way great stability and precision.

            In parallel robots, the motors are located on or near the frame, which makes the moving masses much smaller than in the case of robots based on serial structures. This makes it possible to reduce the masses to the constructive execution of the components without the rigidity of the whole system being harmed. This increases the dynamic capacity of the system and decreases the weight of the system.

            Because the work platform is supported by several kinematic chains, the reaction forces on the component chains are small, so that it is possible to obtain a satisfactory ratio between the mass of the manipulated object and the mass of the robot. Increasing the rigidity of the system can also be used for micro robots for high positioning accuracy and very small dimensions. Due to the stiffness and the small moving masses, the components of the parallel robots can be executed more easily. This reduces the power requirement in the drive system.

            In the case of parallel robots, drive systems with motors based on solid bodies (eg piezo-alloy motors with memory) can also be built. These motors cannot be used in the case of serial structures due to their low driving power. Passive torques of parallel structures contribute to the miniaturization of the system.

            Due to the high rigidity of the parallel structures, the positioning accuracy, and repeatability increase. In parallel robots, the errors in the components and in the couplings do not accumulate as in the case of serial robots. Parallel structures have rather compensatory characteristics that are advantageous in micro-assembly and simplify the adjustment, command, and control system.

            Due to the fact that the motors are positioned on the frame, they can be separated from the working space of the parallel structure. In this way, the power supply, power, and communication cables can be easily insulated. This improves the ability of robotic systems to work in a clean or aseptic environment (Antonescu & Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001; Atefi et al., 2008; Avaei et al., 2008; Aversa et al., 2017a; 2017b; 2017c; 2017d; 2017e; 2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 2016g; 2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 2016n; 2016o; Azaga & Othman, 2008; Cao et al., 2013; Dong et al., 2013; El-Tous, 2008; Comanescu, 2010; Franklin, 1930; He et al., 2013; Jolgaf et al., 2008; Kannappan et al., 2008; Lee, 2013; Lin et al., 2013; Liu et al., 2013; Meena & Rittidech, 2008; Meena et al., 2008; Mirsayar et al., 2017; Ng et al., 2008; Padula, Perdereau & Pannirselvam, 2008; 2013; Perumaal & Jawahar, 2013; Petrescu, 2011; 2015a; 2015b; Petrescu & Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e; 2011a; 2011b; 2012a; 2012b; 2013a; 2013b; 2016a; 2016b; 2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 2018a; 2018b; 2018c; 2018d; 2018e; 2018f; 2018g; 2018h; 2018i; 2018j; 2018k; 2018l; 2018m; 2018n; Pourmahmoud, 2008; Rajasekaran et al., 2008; Shojaeefard et al., 2008; Taher et al., 2008; Tavallaei & Tousi, 2008;  Theansuwan & Triratanasirichai, 2008; Zahedi et al., 2008; Zulkifli et al., 2008).

            The Stewart's leg is used today in the majority of parallel robotic systems, such as the Stewart platform, but also in many other types of mechanisms and kinematic chains, in order to operate them or to transmit motion. A special character in the study of robots is the study of inverse kinematics, with the help of which the map of the motor kinematic parameters necessary to obtain the trajectories imposed on the effector can be made. For this reason, in the proposed mechanism, we will present reverse kinematic modeling in this paper.

            The kinematic output parameters, ie the parameters of the foot and practically of the end effector, ie those of the point marked with T, will be determined for initiating the working algorithm with the help of logical functions, "If log(ical)", with the observation that here they play the role of input parameters; it is positioned as already specified in the inverse kinematics when the output is considered as input and the input as output. The logical functions used, as well as the entire calculation program used, were written in Math Cad 2000.

2.       METHODS AND MATERIALS

            The paper briefly studies the inverse kinematics of a foot mechanism (Figure 1), formed with the help of Stewart's foot.

Fig01

Figure 1: Kinematic scheme of the step mechanism

2.1.          Trajectory of the extreme point t

            In order to determine the trajectory necessary for the extreme point T, the end effector, which represents the point of contact between the foot and the ground, the logical functions (1-2) "If Log" are used, as follows, where k is the general variable considered:

XTk: = if (k <= 50, X0-c.k, X0- c.50)                                       (1)

YTk: = if [k <= 50, Y0, Y0 + c. (K- 50)]                                   (2)

3.       RESULTS AND DISCUSSION

3.1.          First, within the program used, in Mathcad 2000, the initial constants are established (3):

XD := 0         YD:= -0.4

TK := 0.7       DF:= 0.7     TE:= 0.8       DE:= 0.8       DC:= 0.3                                  (3)

            Next is established the "TRACK OF THE EXTREME T POINT" (relation 4, Figure 2), where c represents the step:

X0:= -0.3   Y0:= -0.5

k:= 0..100

c:= 0.005                     

XTk: = if (k <= 50, X0-c.k, X0- c.50)                                      

YTk: = if [k <= 50, Y0, Y0 + c. (K- 50)]                                                                      (4)

Fig02

Figure 2: The coordinates of the point T, y as a function of x

3.2.          Following are the kinematic calculations on the modular group "Dyad RRR (6,3)".

            Write the initial values (5):

F60: = 45

F30: = 120                                                                                                           (5)

            Convert to computer radians (6):

F6: = F60.p / 180

F3: = F30.p / 180                                                                                                (6)

            "Given, Solve and Find" are used to solve (8) the following nonlinear system (7), Figure 3.

Given

XTk-XD+TE.cos(F6)-DE.cos(F3)=0                                                                      (7)

YTk-YD+TE.sin(F6)-DE.sin(F3)=0

solk:=Find(F6,F3)

                                                                                           (8)

Fig03

Figure 3: The angle Fi60 and Fi30 values as a function of k

            Note: The general input variable k is generally written as a lower index in MathCad2000, while in MathCad 15 it is written as a variable (k) in a function between two small parentheses.

            The assignment equal used so far consists of two signs ":" and "=", and can be entered from the corresponding toolbar, while the equal used in an equation is the Boolean “=”.

            The parameters of the K-coupling, of the C-coupling, and of the F-coupling can now be determined directly by assignment ":=" (9-11):

                                                                               (9)

                                                                             (10)

                                                                              (11)

 

3.3.          Following are the kinematic calculations on the modular group "Dyad RTR (1,2)".

            Write the initial values (12), and the algorithm (13), with diagrams (Figure 4):

F10: = 210

F1: = F10.p / 180              

AC:= 0.1                                                                                                           (12)

            Given

0-XCk+AC.cos(F1)=0

0-YCk+AC.sin(F1)=0

solk:=Find(AC,F1)

                                                                                              (13)

Fig04

Figure 4: The angle Fi10 and AC values as a function of k

            Repeat the procedure for determining the dyad (4,5).

3.4.          Following are the kinematic calculations on the modular group "Dyad RTR (4,5)".

            Write the initial values (14), and the algorithm (15), with diagrams (Figure 5):

F40: = 210

F4: = F40.p / 180              

FK:= 0.1                                                                                                            (14)

            Given

XFk - XKk + FK.cos(F4)=0

YFk - YKk + FK.sin(F4)=0

solk:=Find(FK,F4)

                                                                                            (15)

Fig05

Figure 5: The angle Fi40 and FK values as a function of k

4.       CONCLUSIONS

            The parallel structure system that formed the basis of one of the most studied and well-known parallel robots is the Gough platform from 1947.

            The main advantages of parallel robots: they have very high stability even in critical positions occupied even during high-speed movement, so that the objects handled by them are always safe; positioning accuracy is extremely high; at least two of the kinematic chains allow the distribution of the load on them; the number of actuators is minimal; the number of sensors required for closed-loop control of the machine is minimal; if the actuators are locked, the parallel robot remains in the position reached the moment when it was locked, i.e. it will become unbalanced, or fall, or drop the manipulated object, as can happen with serial robots.

            In the case of parallel robots, drive systems with motors based on solid bodies (eg piezo-alloy motors with memory) can also be built. These motors cannot be used in the case of serial structures due to their low driving power. Passive torques of parallel structures contribute to the miniaturization of the system.

            Due to the high rigidity of the parallel structures, the positioning accuracy, and repeatability increase. In parallel robots, the errors in the components and in the couplings do not accumulate as in the case of serial robots. Parallel structures have rather compensatory characteristics that are advantageous in micro-assembly and simplify the adjustment, command, and control system.

            Due to the fact that the motors are positioned on the frame, they can be separated from the working space of the parallel structure. In this way, the power supply, power, and communication cables can be easily insulated.

            In the paper is synthesized the inverse kinematics of a robot leg, which uses in its mechanical structure the Stewart leg mechanism.

            Inverse kinematic modeling is generally the most sought after, as the most important, but in most situations, it is also the most difficult to determine. In the presented paper, the MathCad2000 software was used in order to facilitate the calculations, because the software automatically solves the linear and nonlinear systems through its internal procedures that must be called within the program.

            As an important function, the "IfLog" logic function was used twice in the program to initiate the calculations, by determining the input variables in the inverse kinematics.

5.       ACKNOWLEDGEMENT

            This text was acknowledged and appreciated by Dr. Veturia CHIROIU Honorific member of Technical Sciences Academy of Romania (ASTR) PhD supervisor in Mechanical Engineering.

6.       FUNDING INFORMATION

a)     1-Research contract: 1-Research contract: Contract number 36-5-4D/1986 from 24IV1985, beneficiary CNST RO (Romanian National Center for Science and Technology) Improving dynamic mechanisms.

b)    2-Contract research integration. 19-91-3 from 29.03.1991; Beneficiary: MIS; TOPIC: Research on designing mechanisms with bars, cams and gears, with application in industrial robots.

c)     3-Contract research. GR 69/10.05.2007: NURC in 2762; theme 8: Dynamic analysis of mechanisms and manipulators with bars and gears.

d)    4-Labor contract, no. 35/22.01.2013, the UPB, "Stand for reading performance parameters of kinematics and dynamic mechanisms, using inductive and incremental encoders, to a Mitsubishi Mechatronic System" "PN-II-IN-CI-2012-1-0389".

e)     All these matters are copyrighted! Copyrights: 394-qodGnhhtej, from 17-02-2010 13:42:18; 463-vpstuCGsiy, from 20-03-2010 12:45:30; 631-sqfsgqvutm, from 24-05-2010 16:15:22; 933-CrDztEfqow, from 07-01-2011 13:37:52.

7.       ETHICS

            Authors should address any ethical issues that may arise after the publication of this manuscript.

REFERENCES

Antonescu, P., & Petrescu, F. I. T. (1985). An analytical method of synthesis of cam mechanism and flat stick. Proceedings of the 4th International Symposium on Theory and Practice of Mechanisms, (TPM’ 89)., Bucharest.

Antonescu, P., & Petrescu, F. I. T. (1989). Contributions to kinetoplast dynamic analysis of distribution mechanisms. SYROM’89, Bucharest.

Antonescu, P., Oprean, M.,  & Petrescu, F. I. T. (1985a). Contributions to the synthesis of oscillating cam mechanism and oscillating flat stick. Proceedings of the 4th International Symposium on Theory and Practice of Mechanisms, (TPM’ 85)., Bucharest.

Antonescu, P., Oprean, M.,  & Petrescu, F. I. T. (1985b). At the projection of the oscillate cams, there are mechanisms and distribution variables. Proceedings of the 5th Conference of Engines, Automobiles, Tractors and Agricultural Machines, (TAM’ 58)., I-Motors and Cars, Brasov.

Antonescu, P., Oprean, M.,  & Petrescu, F. I. T. (1986). Projection of the profile of the rotating camshaft acting on the oscillating plate with disengagement. Proceedings of the 3rd National Computer-aided Design Symposium in the field of Mechanisms and Machine Parts, (MMP’ 86)., Brasov.

Antonescu, P., Oprean, M.,  & Petrescu, F. I. T. (1987). Dynamic analysis of the cam distribution mechanisms. Proceedings of the 7th National Symposium on Industrial Robots and Space Mechanisms, (RSM’ 87)., Bucharest.

Antonescu, P., Oprean, M.,  & Petrescu, F. I. T. (1988). Analytical synthesis of Kurz profile, rotating the flat cam. Mach, Build. Rev.

Antonescu, P., Petrescu, F. I. T., & Antonescu, O. (1994). Contributions to the synthesis of the rotating cam mechanism and the tip of the balancing tip. Brasov.

Antonescu, P., Petrescu, F. I. T., & Antonescu, O. (1997). Geometrical synthesis of the rotary cam and balance tappet mechanism. Bucharest(3), 23-23.

Antonescu, P., Petrescu, F. I. T., & Antonescu, O. (2000ª). Contributions to the synthesis of the rotary disc-cam profile. Proceedings of the 8th International Conference on the Theory of Machines and Mechanisms, (TMM’ 00)., Liberec, Czech Republic), 51-56.

Antonescu, P., Petrescu, F. I. T., & Antonescu, O. (2000b). Synthesis of the rotary cam profile with balance follower. Proceedings of the 8th Symposium on Mechanisms and Mechanical Transmissions, (MMT’ 00)., Timişoara), 39-44.

Antonescu, P., Petrescu, F. I. T., & Antonescu, O. (2001). Contributions to the synthesis of mechanisms with rotary disc-cam. Proceedings of the 8th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 01)., Bucharest, ROMANIA), 31-36.

Atefi, G., Abdous, M. A., & Ganjehkaviri, A. (2008). Analytical Solution of Temperature Field in Hollow Cylinder under Time Dependent Boundary Condition Using Fourier series, Am. J. Eng. Applied Sci., 1(2), 141-148. DOI: 10.3844/ajeassp.2008.141.148

Avaei, A., Ghotbi, A. R., & Aryafar, M. (2008). Investigation of Pile-Soil Interaction Subjected to Lateral Loads in Layered Soils, Am. J. Eng. Applied Sci., 1(1), 76-81. DOI: 10.3844/ajeassp.2008.76.81

Aversa, R., Petrescu, R. V. V., Apicella, A.,  & Petrescu, F. I. T. (2017a). Nano-diamond hybrid materials for structural biomedical application. Am. J. Biochem. Biotechnol. (13), 34-41. DOI: 10.3844/ajbbsp.2017.34.41

Aversa, R., Petrescu, R. V. V., Akash, B., Bucinell, R. B., & Corchado, J. M. (2017b). Kinematics and forces to a new model forging manipulator. Am. J. Applied Sci. (14), 60-80. DOI: 10.3844/ajassp.2017.60.80

Aversa, R., Petrescu, R. V. V., Apicella, A.,  Petrescu, F. I. T., & Calautit, J. k. (2017c). Something about the V engines design. Am. J. Applied Sci. (14), 34-52. DOI: 10.3844/ajassp.2017.34.52

Aversa, R., Parcesepe, D., Petrescu, R. V. V., Berto, F., & Chen, G. (2017d). Process ability of bulk metallic glasses. Am. J. Applied Sci. (14), 294-301. DOI: 10.3844/ajassp.2017.294.301

Aversa, R., Petrescu, R. V. V., Akash, B., Bucinell, R. B., & Corchado, J. M. (2017e). Something about the balancing of thermal motors. Am. J. Eng. Applied Sci. (10), 200-217. DOI: 10.3844/ajeassp.2017.200.217

Aversa, R., Petrescu, F. I. T., Petrescu, R. V. V., & Apicella, A. (2016a). Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci. (13), 1060-1067. DOI: 10.3844/ajassp.2016.1060.1067

Aversa, R., Parcesepe, D., Petrescu, R. V. V., G. Chen, G., & Petrescu, F. I. T. (2016b). Glassy amorphous metal injection molded induced morphological defects. Am. J. Applied Sci. (13), 1476-1482. DOI: 10.3844/ajassp.2016.1476.1482

Aversa, R., Petrescu, R. V. V., Petrescu, F. I. T., & Apicella, A. (2016c). Smart-factory: Optimization and process control of composite centrifuged pipes. Am. J. Applied Sci. (13), 1330-1341. DOI: 10.3844/ajassp.2016.1330.1341

Aversa, R., Tamburrino, F., Petrescu, R. V. V., Petrescu, F. I. T., & Artur, M. (2016d). Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am. J. Applied Sci. (13), 1264-1271. DOI: 10.3844/ajassp.2016.1264.1271

Aversa, R., Buzea, E. M., Petrescu, R. V. V., Apicella, A., & Neacsa, M. (2016e). Present a mechatronic system having able to determine the concentration of carotenoids. Am. J. Eng. Applied Sci. (9), 1106-1111. DOI: 10.3844/ajeassp.2016.1106.1111

Aversa, R., Petrescu, R. V. V., Sorrentino, R., Petrescu, F. I. T., & Apicella, A. (2016f). Hybrid ceramo-polymeric nanocomposite for biomimetic scaffolds design and preparation. Am. J. Eng. Applied Sci. (9), 1096-1105. DOI: 10.3844/ajeassp.2016.1096.1105

Aversa, R., Perrotta, V., Petrescu, R. V. V., Misiano, C., & Petrescu, F. I. T. (2016g). From structural colors to super-hydrophobicity and achromatic transparent protective coatings: Ion plating plasma assisted TiO2 and SiO2 nano-film deposition. Am. J. Eng. Applied Sci. (9), 1037-1045. DOI: 10.3844/ajeassp.2016.1037.1045

Aversa, R., Petrescu, R. V. V., Petrescu, F. I. T., & Apicella, A. (2016h). Biomimetic and evolutionary design driven innovation in sustainable products development. Am. J. Eng. Applied Sci. (9), 1027-1036. DOI: 10.3844/ajeassp.2016.1027.1036

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016i). Mitochondria are naturally micro robots - a review. Am. J. Eng. Applied Sci., 9: 991-1002. DOI: 10.3844/ajeassp.2016.991.1002

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016j). We are addicted to vitamins C and E-A review. Am. J. Eng. Applied Sci. (9), 1003-1018. DOI: 10.3844/ajeassp.2016.1003.1018

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016k). Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am. J. Eng. Applied Sci. (9), 962-972. DOI: 10.3844/ajeassp.2016.962.972

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016l). One can slow down the aging through antioxidants. Am. J. Eng. Applied Sci. (9), 1112-1126. DOI: 10.3844/ajeassp.2016.1112.1126

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016m). About homeopathy or Similia Similibus Curentur. Am. J. Eng. Applied Sci. (9), 1164-1172. DOI: 10.3844/ajeassp.2016.1164.1172

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2016n). The basic elements of life's. Am. J. Eng. Applied Sci. (9), 1189-1197. DOI: 10.3844/ajeassp.2016.1189.1197

Aversa, R., Petrescu, F. I. T., Petrescu, R. V. V., & Apicella, A. (2016o). Flexible stem trabecular prostheses. Am. J. Eng. Applied Sci. (9), 1213-1221. DOI: 10.3844/ajeassp.2016.1213.122

Azaga, M., & Othman, M. (2008). Source Couple Logic (SCL).: Theory and Physical Design, Am. J. Eng. Applied Sci., 1(1), 24-32. DOI: 10.3844/ajeassp.2008.24.32

Cao, W., Ding, H., Bin, Z., & Ziming, C. (2013). New structural representation and digital-analysis platform for symmetrical parallel mechanisms. Int. J. Adv. Robotic Sys. DOI: 10.5772/56380

Comanescu, A. (2010). Bazele Modelarii Mecanismelor. 1st Edn., E. Politeh, Press, Bucureşti, 274.

Dong, H., Giakoumidis, N., Figueroa, N., & Mavridis, N. (2013). Approaching behaviour monitor and vibration indication in developing a General Moving Object Alarm System (GMOAS).. Int. J. Adv. Robotic Sys. DOI: 10.5772/56586

Yousif El-Tous, (2008). Pitch Angle Control of Variable Speed Wind Turbine, Am. J. Eng. Applied Sci., 1(2), 118-120. DOI: 10.3844/ajeassp.2008.118.120

Franklin, D. J. (1930). Ingenious Mechanisms for Designers and Inventors. 1st Edn., Industrial Press Publisher.

He, B., Wang, Z., Li, Q., Xie, H., Shen, R. (2013). An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. IJARS. DOI: 10.5772/54051

Jolgaf, M., Sulaiman, S. B., M.K.A Ariffin, M. K. A., & Faieza, A. A. (2008). Closed Die Forging Geometrical Parameters Optimization for Al-MMC, Am. J. Eng. Applied Sci., 1(1), 1-6. DOI : 10.3844/ajeassp.2008.1.6

Kannappan, A. N., Kesavasamy, R., & Ponnuswamy, V. (2008). Molecular Interaction Studies of H-Bonded Complexes of Benzamide in 1,4-Dioxan with Alcohols From Acoustic and Thermodynamic Parameters, Am. J. Eng. Applied Sci., 1(2), 95-99. DOI: 10.3844/ajeassp.2008.95.99

Lee, B. J. (2013). Geometrical derivation of differential kinematics to calibrate model parameters of flexible manipulator. Int. J. Adv. Robotic Sys. DOI: 10.5772/55592

Lin, W., Li, B., Yang, X., & Zhang, D. (2013). Modelling and control of inverse dynamics for a 5-DOF parallel kinematic polishing machine. Int. J. Adv. Robotic Sys. DOI: 10.5772/54966

Liu, H., Zhou, W., Lai, X., & Zhu, S. (2013). An efficient inverse kinematic algorithm for a PUMA560-structured robot manipulator. IJARS. DOI: 10.5772/56403

Meena, P., & Rittidech, S. (2008). Comparisons of Heat Transfer Performance of a Closed-looped Oscillating Heat Pipe and Closed-looped Oscillating Heat Pipe with Check Valves Heat Exchangers, Am. J. Eng. Applied Sci., 1(1), 7-11. DOI: 10.3844/ajeassp.2008.7.11

Meena, P., Rittidech, S., & Tammasaeng, P. (2008). Effect of Inner Diameter and Inclination Angles on Operation Limit of Closed-Loop Oscillating Heat-Pipes with Check Valves, Am. J. Eng. Applied Sci., 1(2), 100-103. DOI: 10.3844/ajeassp.2008.100.103

Mirsayar, M. M., Joneidi, A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017). Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fracture Mechan. (178), 50-59. DOI: 10.1016/j.engfracmech.2017.04.018

Ng, K. C., Yusoff,M. Z., Munisamy, K., Hasini, H.,  & Shuaib, N. H. (2008). Time-Marching Method for Computations of High-Speed Compressible Flow on Structured and Unstructured Grid, Am. J. Eng. Applied Sci., 1(2), 89-94. DOI: 10.3844/ajeassp.2008.89.94

Padula, F., & Perdereau, V. (2013). An on-line path planner for industrial manipulators. Int. J. Adv. Robotic Sys. DOI: 10.5772/55063

Pannirselvam, N., Raghunath, N., & Suguna, K. (2008). Neural Network for Performance of Glass Fibre Reinforced Polymer Plated RC Beams, Am. J. Eng. Applied Sci., 1(1), 82-88. DOI: 10.3844/ajeassp.2008.82.88

Perumaal, S., & Jawahar, N. (2013). Automated trajectory planner of industrial robot for pick-and-place task. IJARS. DOI: 10.5772/53940

Petrescu, F. I. T., & Petrescu, R. V. V. (1995a). Contributions to optimization of the polynomial motion laws of the stick from the internal combustion engine distribution mechanism. Bucharest (1), 249-256.

Petrescu, F. I. T., & Petrescu, R. V. V. (1995b). Contributions to the synthesis of internal combustion engine distribution mechanisms. Bucharest (1), 257-264.

Petrescu, F. I. T., & Petrescu, R. V. V. (1997a). Dynamics of cam mechanisms (exemplified on the classic distribution mechanism). Bucharest (3), 353-358.

Petrescu, F. I. T., & Petrescu, R. V. V. (1997b). Contributions to the synthesis of the distribution mechanisms of internal combustion engines with a Cartesian coordinate method. Bucharest (3), 359-364.

Petrescu, F. I. T., & Petrescu, R. V. V. (1997c). Contributions to maximizing polynomial laws for the active stroke of the distribution mechanism from internal combustion engines. Bucharest (3), 365-370.

Petrescu, F. I. T., & Petrescu, R. V. V. (2000a). Synthesis of distribution mechanisms by the rectangular (Cartesian). coordinate method. Proceedings of the 8th National Conference on International Participation, (CIP' 00)., Craiova, Romania, 297-302.

Petrescu, F. I. T., & Petrescu, R. V. V. (2000b). The design (synthesis). of cams using the polar coordinate method (triangle method).. Proceedings of the 8th National Conference on International Participation, (CIP' 00)., Craiova, Romania, 291-296.

Petrescu, F. I. T., & Petrescu, R. V. V. (2002a). Motion laws for cams. Proceedings of the International Computer Assisted Design, National Symposium Participation, (SNP' 02)., Braşov, p 321-326.

Petrescu, F. I. T., & Petrescu, R. V. V. (2002b). Camshaft dynamics elements. Proceedings of the International Computer Assisted Design, National Participation Symposium, (SNP' 02)., Braşov, 327-332.

Petrescu, F. I. T., & Petrescu, R. V. V. (2003). Some elements regarding the improvement of the engine design. Proceedings of the National Symposium, Descriptive Geometry, Technical Graphics and Design, (GTD' 03)., Braşov, 353-358.

Petrescu, F. I. T., & Petrescu, R. V. V. (2005a). The cam design for a better efficiency. Proceedings of the International Conference on Engineering Graphics and Design, (EGD’ 05)., Bucharest, 245-248.

Petrescu, F. I. T., & Petrescu, R. V. V. (2005b). Contributions at the dynamics of cams. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 05)., Bucharest, Romania, 123-128.

Petrescu, F. I. T., & Petrescu, R. V. V. (2005c). Determining the dynamic efficiency of cams. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 05)., Bucharest, Romania, 129-134.

Petrescu, F. I. T., & Petrescu, R. V. V. (2005d). An original internal combustion engine. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 05)., Bucharest, Romania, 135-140.

Petrescu, F. I. T., & Petrescu, R. V. V. (2005e). Determining the mechanical efficiency of Otto engine’s mechanism. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM 05)., Bucharest, Romania, 141-146.

Petrescu, F. I. T., & Petrescu, R. V. V. (2011a). Mechanical Systems, Serial and Parallel (Romanian).. 1st Edn., LULU Publisher, London, UK, 124.

Petrescu, F. I. T., & Petrescu, R. V. V. (2011b). Trenuri Planetare. Createspace Independent Pub., 104 pages, ISBN-13: 978-1468030419.

Petrescu, F. I. T., & Petrescu, R. V. V. (2012a). Kinematics of the planar quadrilateral mechanism. ENGEVISTA (14), 345-348.

Petrescu, F. I. T., & Petrescu, R. V. V. (2012b). Mecatronica-Sisteme Seriale si Paralele. 1st Edn., Create Space Publisher, USA, 128.

Petrescu, F. I. T., & Petrescu, R. V. V. (2013a). Cinematics of the 3R dyad. ENGEVISTA (15), 118-124.

Petrescu, F. I. T., & Petrescu, R. V. V. (2013b). Forces and efficiency of cams. Int. Rev. Mechanical Eng.

Petrescu, F. I. T., & Petrescu, R. V. V. (2016a). Parallel moving mechanical systems kinematics. ENGEVISTA (18), 455-491.

Petrescu, F. I. T., & Petrescu, R. V. V. (2016b). Direct and inverse kinematics to the anthropomorphic robots. ENGEVISTA (18), 109-124.

Petrescu, F. I. T., & Petrescu, R. V. V. (2016c). Dynamic cinematic to a structure 2R. Revista Geintec-Gestao Inovacao E Tecnol. (6), 3143-3154.

Petrescu, F. I. T., Grecu, B., Comanescu, A., & Petrescu, R. V. V. (2009). Some mechanical design elements. Proceeding of the International Conference on Computational Mechanics and Virtual Engineering, (MVE’ 09)., Braşov, 520-525.

Petrescu, F. I. T. (2011). Teoria Mecanismelor si a Masinilor: Curs Si Aplicatii. 1st Edn., CreateSpace Independent Publishing Platform. ISBN-10: 1468015826. P. 432.

Petrescu, F. I. T. (2015a). Geometrical synthesis of the distribution mechanisms. Am. J. Eng. Applied Sci. (8), 63-81. DOI: 10.3844/ajeassp.2015.63.81

Petrescu, F. I. T. 2015b. Machine motion equations at the internal combustion heat engines. Am. J. Eng. Applied Sci., (8) 127-137. DOI: 10.3844/ajeassp.2015.127.137

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2016). Future medicine services robotics. Am. J. Eng. Applied Sci. (9), 1062-1087. DOI: 10.3844/ajeassp.2016.1062.1087

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017a). Yield at thermal engines internal combustion. Am. J. Eng. Applied Sci. (10), 243-251. DOI: 10.3844/ajeassp.2017.243.251

Petrescu, R. V. V.,  Aversa, R., Akash, B., Ronald, B., & Corchado, j. ( 2017b). Velocities and accelerations at the 3R mechatronic systems. Am. J. Eng. Applied Sci. (10), 252-263. DOI: 10.3844/ajeassp.2017.252.263

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017c). Anthropomorphic solid structures n-r kinematics. Am. J. Eng. Applied Sci. (10), 279-291. DOI: 10.3844/ajeassp.2017.279.291

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017d). Inverse kinematics at the anthropomorphic robots, by a trigonometric method. Am. J. Eng. Applied Sci. (10), 394-411. DOI: 10.3844/ajeassp.2017.394.411

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017e). Forces at internal combustion engines. Am. J. Eng. Applied Sci. (10), 382-393. DOI: 10.3844/ajeassp.2017.382.393

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017f). Gears-Part I. Am. J. Eng. Applied Sci. (10), 457-472. DOI: 10.3844/ajeassp.2017.457.472

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017g). Gears-part II. Am. J. Eng. Applied Sci. (10), 473-483. DOI: 10.3844/ajeassp.2017.473.483

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017h).. Cam-gears forces, velocities, powers and efficiency. Am. J. Eng. Applied Sci. (10), 491-505. DOI: 10.3844/ajeassp.2017.491.505

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017i). Dynamics of mechanisms with cams illustrated in the classical distribution. Am. J. Eng. Applied Sci. (10), 551-567. DOI: 10.3844/ajeassp.2017.551.567

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R.,  & Corchado, J. (2017j). Testing by non-destructive control. Am. J. Eng. Applied Sci. (10), 568-583. DOI: 10.3844/ajeassp.2017.568.583

Petrescu, R. V. V.,  Aversa, R., Apicella, A., & Petrescu, F. I. T. (2017k). Transportation engineering. Am. J. Eng. Applied Sci. (10), 685-702. DOI: 10.3844/ajeassp.2017.685.702

Petrescu, R. V. V., Aversa, R., Kozaitis, S., Apicella, A., & Petrescu, F. I. T. (2017l). The quality of transport and environmental protection, part I. Am. J. Eng. Applied Sci. (10), 738-755. DOI: 10.3844/ajeassp.2017.738.755

Petrescu, R. V. V., Aversa, R., Akash, B., R. Bucinell, R., & Corchado, J. (2017m). Modern propulsions for aerospace-a review. J. Aircraft Spacecraft Technol. (1), 1-8. DOI: 10.3844/jastsp.2017.1.8

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R., & Corchado, J. (2017n). Modern propulsions for aerospace-part II. J. Aircraft Spacecraft Technol. (1), 9-17. DOI: 10.3844/jastsp.2017.9.17

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R., & Corchado, J. (2017o). History of aviation-a short review. J. Aircraft Spacecraft Technol. (1), 30-49. DOI: 10.3844/jastsp.2017.30.49

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R., & Corchado, J. (2017p). Lockheed martin-a short review. J. Aircraft Spacecraft Technol. (1), 50-68. DOI: 10.3844/jastsp.2017.50.68

Petrescu, R. V. V., Aversa, R., Akash, B., Bucinell, R., & Corchado, J. (2017q). Our universe. J. Aircraft Spacecraft Technol. (1), 69-79. DOI: 10.3844/jastsp.2017.69.79

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017r). What is a UFO? J. Aircraft Spacecraft Technol. (1), 80-90. DOI: 10.3844/jastsp.2017.80.90

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017s). About bell helicopter FCX-001 concept aircraft-a short review. J. Aircraft Spacecraft Technol. (1), 91-96. DOI: 10.3844/jastsp.2017.91.96

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017t). Home at airbus. J. Aircraft Spacecraft Technol. (1), 97-118. DOI: 10.3844/jastsp.2017.97.118

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017u). Airlander. J. Aircraft Spacecraft Technol. (1), 119-148. DOI: 10.3844/jastsp.2017.119.148

Petrescu, R. V. V., Ersa, R., Akash, B., Corchado, J., & Berto, F. (2017v). When boeing is dreaming-a review. J. Aircraft Spacecraft Technol. (1), 149-161. DOI: 10.3844/jastsp.2017.149.161

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. ( 2017w). About Northrop Grumman. J. Aircraft Spacecraft Technol. (1), 162-185. DOI: 10.3844/jastsp.2017.162.185

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017x). Some special aircraft. J. Aircraft Spacecraft Technol. (1), 186-203. DOI: 10.3844/jastsp.2017.186.203

Petrescu, R. V. V., Aversa, R., Akash, B., Corchado, J., & Berto, F. (2017y). About helicopters. J. Aircraft Spacecraft Technol. (1), 204-223. DOI: 10.3844/jastsp.2017.204.223

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017z). The modern flight. J. Aircraft Spacecraft Technol. (1), 224-233. DOI: 10.3844/jastsp.2017.224.233

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017aa). Sustainable energy for aerospace vessels. J. Aircraft Spacecraft Technol. (1), 234-240. DOI: 10.3844/jastsp.2017.234.240

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017ab). Unmanned helicopters. J. Aircraft Spacecraft Technol. (1), 241-248. DOI: 10.3844/jastsp.2017.241.248

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017ac). Project HARP. J. Aircraft Spacecraft Technol. (1), 249-257. DOI: 10.3844/jastsp.2017.249.257

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017ad). Presentation of Romanian engineers who contributed to the development of global aeronautics-part I. J. Aircraft Spacecraft Technol. (1), 258-271. DOI: 10.3844/jastsp.2017.258.271

Petrescu, R. V. V., Aversa, R., Akash, B., Berto, F., & Apicella, A. (2017ae). A first-class ticket to the planet mars, please. J. Aircraft Spacecraft Technol. (1), 272-281. DOI: 10.3844/jastsp.2017.272.281

Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M. M., & Kozaitis, S. (2018a). NASA started a propeller set on board voyager 1 after 37 years of break. Am. J. Eng. Applied Sci. (11), 66-77. DOI: 10.3844/ajeassp.2018.66.77

Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M. M., & Kozaitis, S. (2018b). There is life on mars? Am. J. Eng. Applied Sci. (11), 78-91. DOI: 10.3844/ajeassp.2018.78.91

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018c). Friendly environmental transport. Am. J. Eng. Applied Sci. (11), 154-165. DOI: 10.3844/ajeassp.2018.154.165

Petrescu, R. V. V., Aversa, R., Akash, B., Abu-Lebdeh, T. M., T. M., & Apicella, A. (2018d). Buses running on gas. Am. J. Eng. Applied Sci. (11), 186-201. DOI: 10.3844/ajeassp.2018.186.201

Petrescu, R. V. V., Aversa, R., Akash, B., Abu-Lebdeh, T. M., T. M., & Apicella, A. (2018e). Some aspects of the structure of planar mechanisms. Am. J. Eng. Applied Sci. (11), 245-259. DOI: 10.3844/ajeassp.2018.245.259

Petrescu, R. V. V., Aversa, R., Abu-Lebdeh, T. M., Apicella, A., & Petrescu, F. I. T. (2018f). The forces of a simple carrier manipulator. Am. J. Eng. Applied Sci. (11), 260-272. DOI: 10.3844/ajeassp.2018.260.272

Petrescu, R. V. V., Aversa, R., Abu-Lebdeh, T. M., Apicella, A., & Petrescu, F. I. T. (2018g). The dynamics of the otto engine. Am. J. Eng. Applied Sci. (11), 273-287. DOI: 10.3844/ajeassp.2018.273.287

Petrescu, R. V. V., Aversa, R., Abu-Lebdeh, T. M., Apicella, A., & Petrescu, F. I. T. (2018h). NASA satellites help us to quickly detect forest fires. Am. J. Eng. Applied Sci. (11), 288-296. DOI: 10.3844/ajeassp.2018.288.296

Petrescu, R. V. V., Aversa, R., Abu-Lebdeh, T. M., Apicella, A., & Petrescu, F. I. T. (2018i). Kinematics of a mechanism with a triad. Am. J. Eng. Applied Sci. (11), 297-308. DOI: 10.3844/ajeassp.2018.297.308

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018j). Romanian engineering "on the wings of the wind". J. Aircraft Spacecraft Technol. (2), 1-18. DOI: 10.3844/jastsp.2018.1.18

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018k). NASA Data used to discover eighth planet circling distant star. J. Aircraft Spacecraft Technol. (2), 19-30. DOI: 10.3844/jastsp.2018.19.30

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018l). NASA has found the most distant black hole. J. Aircraft Spacecraft Technol. (2), 31-39. DOI: 10.3844/jastsp.2018.31.39

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018m). Nasa selects concepts for a new mission to titan, the moon of saturn. J. Aircraft Spacecraft Technol., 2: 40-52. DOI: 10.3844/jastsp.2018.40.52

Petrescu, R. V. V., Aversa, R., Apicella, A., & Petrescu, F. I. T. (2018n). NASA sees first in 2018 the direct proof of ozone hole recovery. J. Aircraft Spacecraft Technol. (2), 53-64. DOI: 10.3844/jastsp.2018.53.64

Pourmahmoud, N. (2008). Rarefied Gas Flow Modeling inside Rotating Circular Cylinder, Am. J. Eng. Applied Sci., 1(1), 62-65. DOI: 10.3844/ajeassp.2008.62.65

Rajasekaran, A., Raghunath, N., & Suguna, K. (2008). Effect of Confinement on the Axial Performance of Fibre Reinforced Polymer Wrapped RC Column, Am. J. Eng. Applied Sci., 1(2), 110-117. DOI: 10.3844/ajeassp.2008.110.117

Shojaeefard, M. H., Goudarzi, K., Noorpoor, A. R., & Fazelpour, M. (2008). A Study of Thermal Contact using Nonlinear System Identification Models, Am. J. Eng. Applied Sci., 1(1), 16-23. DOI: 10.3844/ajeassp.2008.16.23

Taher, S. A., Hematti, R., & Nemati, M. (2008). Comparison of Different Control Strategies in GA-Based Optimized UPFC Controller in Electric Power Systems, Am. J. Eng. Applied Sci., 1(1), 45-52. DOI: 10.3844/ajeassp.2008.45.52

Tavallaei, M. A., & Tousi, B. (2008). Closed Form Solution to an Optimal Control Problem by Orthogonal Polynomial Expansion, Am. J. Eng. Applied Sci., 1(2), 104-109. DOI: 10.3844/ajeassp.2008.104.109

Theansuwan, W., & Triratanasirichai, K. (2008). Air Blast Freezing of Lime Juice: Effect of Processing Parameters, Am. J. Eng. Applied Sci., 1(1), 33-39. DOI: 10.3844/ajeassp.2008.33.39

Zahedi, S. A., Vaezi, M.,  & Tolou, N. (2008). Nonlinear Whitham-Broer-Kaup Wave Equation in an Analytical Solution, Am. J. Eng. Applied Sci., 1(2), 161-167. DOI: 10.3844/ajeassp.2008.161.167

Zulkifli, R., Sopian, K., Abdullah, S., & Takriff, M. S. (2008). Effect of Pulsating Circular Hot Air Jet Frequencies on Local and Average Nusselt Number, Am. J. Eng. Applied Sci., 1(1), 57-61. DOI: 10.3844/ajeassp.2008.57.61