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ABSTRACT 

This paper deals with optimization of surface roughness and 

delamination damage on GFRP  material during end milling using grey 

- based taguchi method. Three parameters namely spindle speed, feed 

rate and depth of cut were identified and ranges of the parameters for 

the present investigation were determined from preliminary 

experiments. Taguchi method based on L9 orthogonal array was 

selected and experiments were conducted as per experimental layout 

plan. The experiments were carried out on a CNC vertical machining 

center to perform 10mm slots on GFRP work piece of 

300mmX50mmX25mm size by K10 carbide, four flute end milling 

cutter. Surface roughness and delamination damage were measured 

on each slot with the aid of form Talysurf 50 and tool maker’s micro 

scope. An optimal combination of process parameters were obtained 

via grey based taguchi method. From the results of ANOVA, it is 

concluded that cutting speed and depth of cut are the most significant 

factors affecting the surface roughness and delamination damage 

factor and their contribution in an order of 26.84% and 40.44% 

respectively. A confirmatory experiment shows that 5.052µm for 

surface roughness and 1.682 delamination damage factor to validate 

the used approach after conducting with optimal setting of process 

parameters.  

Keywords: GFRP, End milling, Grey- based Taguchi Method, ANOVA  
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1. INTRODUCTION: 

 Fiber reinforced composite material are alternative to steel and other materials 

in highly corrosive industrial applications. In recent years, fiber reinforced composite 

material have been extensively used in variety of engineering applications in different 

fields such as Aerospace, Naval, and other industries. The machining of fiber 

reinforced composites is different from conventional materials. The behavior of 

composites is anisotropic.  

 The quality of machined products depends upon the type of fibers, reinforced 

materials used, bonding strength between fiber and matrix, type of weave, etc. Milling 

of composite materials is a rather complex task owing to the heterogeneity of the 

material and a number of other problems, such as surface roughness and 

delamination factor, which appear during the machining process and are associated 

with the characteristics of the material and the cutting parameters. Surface 

roughness and delamination factor are parameters that have a great influence on 

dimensional precision and performance of mechanical pieces.  

 For this reason, research and development have been carried out through 

design experiments to reach a specific surface roughness and a specific 

delamination factor. GFRP are increasingly being used for varieties of engineering 

applications because of their superior advantage over other engineering materials 

(BANNISTER, 2001). The advantages include high strength to weight ratio, high 

fracture toughness and excellent corrosion and thermal resistance. The tail arability 

of composites for specific applications has been one of their greater advantages and 

also one of the more perplexing challenges to adopting them as alternative to 

conventional materials (KISHORE; TIWARI; SINGH, 2009). Even though Glass fiber 

reinforce polymer (GFRP) pipe made by filament wind technique require further 

machining to facilitate dimensional control for easy assembly and control of surface 

quality for functional aspects (BHATNAGAR; RAMAKRISHNAN; NAIK; 

KOMANDURAI, 1995).  

 The users of FRP are facing difficulties when machining it, because basic 

knowledge and experience needed for conventional materials cannot be applied for 

such new innovative materials, whose ability to machine is different from that of 
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conventional materials (MONTGOMERY, 1991). Thus it is desirable to investigate the 

behavior of FRPs during the machining process. Everstine and Rogers, (1971), 

predicted a new approach of an analytical theory of machining FRPs. In this study, 

they predicted a theory of plane deformation of incompressible composites reinforced 

by strong parallel fibers.  

 Bhatnagar et al (1995) studied how the fiber orientation influence both the 

quality of the machined surfaces and tool wear rate. The machinability of composites 

is influenced by the type of fiber inserted in the composites, and especially by the 

mechanical properties. On the other hand, the selection of parameters and tool are 

dependent on the type of fiber used in the composites and which is very important in 

the machining process. Davim, Mata (2004) revealed that the influence of cutting 

parameters on surface roughness in turning glass-fiber reinforced plastics using 

statistical analysis. Ramulu, et al (1994), experimentally carried out a study on 

machining of polymer composites and concluded that higher spindle speeds give 

better surface finish.  

 Santhana, krishanan et al (1989) studied the surface roughness on machining 

of GFRP composites, according to them, higher spindle speed produce more surface 

damage on the machined edge. This is attributed to higher cutting temperature, 

which results in local annealing of work material. They also focused on the 

machinability of FRP composites using the USM technique. According to Koing et al. 

(1985), measurement of surface roughness in FRP is less dependable compared to 

that in metals, because protruding fiber tips may lead to additional errors it may 

cause the fibers to stick on the stylus.  

 Palanikumar et al. (2006) studied the effect of cutting parameters on surface 

roughness on machining of GFRP composites by polycrystalline diamond (PCD) tool 

by developing a second order model for predicting the surface roughness average. 

Palanikumar et al (2008) developed a procedure to optimize the factors chosen to 

attain minimum surface roughness by incorporating response table and graph, 

normal plot, interaction plots, and analysis of variance technique. The average 

surface roughness of machined GFRP parts are important in manufacturing 

engineering applications which have considerable effect on some properties such as 

resistance to wear,  reflection of light, transmission of heat, coating and fatigue 
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resistance. While machining, quality can be achieved through proper machining 

conditions. In order to know the quality of surface and dimensional accuracy in 

advance, it is necessary to adopt theoretical models making it feasible to do predict 

in the function of operation condition. 

2. EXPERIMENTAL SET UP: 

2.1. Schematic of Machining: 

 The work material used for present work is glass fiber reinforced polymeric 

composite material fabricated by hand layup  method  of 33% fiber and 66% general 

purpose resin with randomly oriented long fibers supplied by Saint Gobain Vetrotex 

India Limited. The dimensions of the work piece are 300mmX50mmX25mm. In this 

study, the experiments were carried out on a CNC vertical machining center (KENT 

and   ND Co. Ltd, Taiwan make) to perform 10mm slots on GFRP work piece by K10 

carbide, four flute end milling cutter as shown in Figure1.  

 Furthermore the spindle speed (rpm), the feed rate (mm/min) and depth of cut 

(mm) are regulated in this experiment. Each experiment was conducted three times 

and the maximum width of the delamination damage (Wmax) around the slot 

periphery using Travelling Microscope with an accuracy of 10µm is measured at five 

places on each slot then average of them in mm after that Delamination Damage 

Factor calculated. Similarly, the surface roughness is measured at five places on 

each slot then average of them in µm is considered by a surface analyser of Form 

Talysurf 50 (Taylor Hobson Co Ltd). Measured observations are depicted in Table 3 

and 4. 

 
Figure 1: Machining of GFRP by CNC vertical machining center with K10 carbide End 

Mill  
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2.2. Delamination and Surface Roughness and its Measurement 

 Failure analysis of laminated composite structures has attracted a great deal 

of interest in recent years due to the increased application of composite materials in 

a wide range of high performance structures. Delamination, the separation of two 

adjacent plies in composite laminates, represents one of the most critical failure 

models in composite laminates. In fact, it is an essential issue in the evaluation of 

composite laminates for durability and delamination damage tolerance. The value of 

the delamination damage factor (Fd) can be obtained using the following equation: F d 

= Wmax / W, Where Wmax is the maximum width of the damage around the slot 

periphery and W is width of cut. 

 The surface roughness parameter used to evaluate surface roughness in this 

study is the Roughness average (Ra). This parameter is also known as the arithmetic 

mean roughness value, arithmetic average or centerline average. Within the 

presented research framework, the discussion of surface roughness is focused on 

the universally recognized Ra. The average roughness is the area between the 

roughness profile and its Centre line, or the integral of the absolute value of the 

roughness profile height over the observed length. 

 
Figure 2: Measurement of surface roughness using Form Talysurf 50 (Taylor Hobson 

Co Ltd) 
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Figure 3: Measurement of delamination damage using Tool makers Microscope 

2.3. Experimentation as per Taguchi Design Method 

 A plan of experiments based on Taguchi technique has been used to acquire 

the data. An orthogonal array and Grey relational analysis has been employed to 

investigate the cutting characteristics of GFRP material using K10 carbide tool. 

Finally, confirmation test (ANOVA) have been carried out to compare the predicted 

values with the experimental values confirm its effectiveness in the analysis of 

surface roughness and delamination damage. Also, The orthogonal array forms the 

basis for the experimental analysis in the Taguchi method. The selection of 

orthogonal array is concerned with the total degree of freedom of process 

parameters.  

 Total degree of freedom (DOF) associated with three parameters is equal to 6 

(3X2=6).The degree of freedom for the orthogonal array should be greater than or at 

least equal to that of the process parameters. There by, a L9 orthogonal array having 

degree of freedom equal to (9-1= 8) 8 has been considered .But in present case each 

experiment is conducted three times, therefore total degree of freedom (9X3-1=26) 

26 has been considered finally. The machining parameters and their levels are given 

in table1. Plan of experiments based on Taguchi orthogonal array shown in table 4. 

Table 1: Parameters and their Levels. 
Symbol Factors units Level 1 Level 2 Level 3 

A cutting speed rpm 1000 1250 1500 
B feed rate mm/min 200 300 400 
C depth of cut mm 0.5 1 1.5 
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Table 2: Summary of observed experimental data (Surface Roughness): 

Table 3: Summary of observed experimental data (Delamination Damage Factor): 

Table 4: Responses observed in the Experimentation as per Taguchi Design  
Exp.No Machining parameters Responses 

Cutting 
Speed(A) 

rpm 

Feed 
rate(B) 
mm/min 

Depth of 
Cut(C) 

mm 

Delamination 
damage 

Factor(Fd) 

Average Surface 
Roughness(Ra) 

µm 
1 1000 200 0.5 1.22 2.630 

2 1000 300 1 1.85 5.306 

3 1000 400 1.5 1.24 3.810 

4 1250 200 1 1.56 5.178 

5 1250 300 1.5 1.47 2.066 

6 1250 400 0.5 1.68 6.192 

7 1500 200 1.5 1.51 3.266 

8 1500 300 1 1.18 8.670 

9 1500 400 0.5 1.12 3.852 

 
2.4. Grey Relational Analysis   

 In grey relational analysis, black represents having no information and white 

represents having all information. A grey system has a level of information between 

black and white. This analysis can be used to represent the grade of correlation 

between two sequences so that the distance of two factors can be measured 

discretely. In the case where experiments are ambiguous or when the experimental 

method cannot be carried out exactly, grey analysis helps to compensate for the 

Exp.No Surface Roughness Surface Roughness 
average (Ra) µm Trial 1 Trial 2 Trial 3 

1 2.600 2.640 2.650 2.630 
2 5.260 5.220 5.600 5.360 
3 3.800 3.730 3.900 3.810 
4 5.168 5.310 4.996 5.158 
5 2.106 3.021 1.071 2.066 
6 6.200 5.920 6.444 6.188 
7 3.260 3.860 2.678 3.266 
8 7.920 8.260 9.830 8.670 
9 3.850 3.786 3.920 3.852 

Exp.No Delamination Damage Factor Average of Delamination 
Damage Factor(Fd)  Trial 1 Trial 2 Trial 3 

1 1.25 1.18 1.23 1.22 
2 1.76 1.69 2.10 1.85 
3 1.36 1.18 1.18 1.24 
4 1.42 1.61 1.65 1.56 
5 1.37 1.53 1.51 1.47 
6 1.71 1.64 1.69 1.68 
7 1.48 1.53 1.52 1.51 
8 1.22 1.15 1.17 1.18 
9 1.08 1.10 1.18 1.12 
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shortcoming in statistical regression .Grey relation analysis is an effective means of 

analyzing the relationship between sequences with less data and can analyze many 

factors that can overcome the disadvantages of statistical method. 

2.4.1. Data Pre-Processing  

 In grey relational analysis, when the range of the sequence is large or the 

standard value is enormous, the functions of factors are neglected. However, if the 

factor goals and directions are different, the grey relational might produce incorrect 

results. Therefore, one has to pre-process the data which are related to a group of 

sequences, which is called ‘grey relational generation’  

 Data pre-processing is a process of transferring the original sequence to a 

comparable sequence. For this purpose the experimental results are normalized in 

the range between zero and one. The normalization can be done form three different 

approaches.  

 If the target value of original sequence is infinite, then it has a characteristic of 

“the larger-the –better”. The original sequence can be normalized as follows.  

(K)minx(K)xmax

(K)minx(K)x
(k)x

0
i

0
i

0
i

0
i*

i 


                                                                (1) 

 If the expectancy is the smaller-the better, then the original sequence should 

be normalized as follows.  
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 However, if there is a definite target value to be achieved, the original 

sequence will be normalized in the form.  
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 Or the original sequence can be simply normalized by the most basic 

methodology i.e., let the values of original sequence be divided by the first value of 

sequence 

)(x

(K)x
(k)x

0
i

0
i*

i
1

                                                                                     (4) 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 307 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br   v. 5, n. 2, February – May 2014. 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v5i2.152

 Where (k)x*
i  is the value after the grey relational generation (data pre-

processing), max (k)xi
0 is the largest value of (k)xi

0 , min (k)xi
0 is the smallest value of 

(k)xi
0  and xn is the desired value.  

2.4.2. Grey relational coefficient and grey relational grade 

 Following data pre-processing, a grey relational coefficient is calculated to 

express the relationship between the ideal and actual normalized experimental 

results. They grey relational coefficient can be expressed as follows: 

max

maxmin

.)(

.









k

(k)
oi

i                                                                                           (5) 

 Where )(koi is the deviation sequence of the reference sequence (k)x*
o and 

the comparability sequence (k)x*
i , namely  

)(koi = || (k)x*
o - (k)x*

i || 

max = ||)(*)(*
0||maxmax kixkx

kij


 

 

min = ||)()(||minmin
**

0 kxkx
kij

i
 

 

 is distinguishing or identification coefficient   to [0,1]. =0.5 is generally used. 

 After obtaining the grey relational coefficient, normally choose the average of 

the grey relational coefficient as the grey relational grade. The grey relational grade 

is obtained by  





n

k
ii k

n 1

1
)(
                                                                                                       

 (6) 

 In the grey relational analysis, the grey relational grade shows the relationship 

among the sequences. If the two sequences are similar, then the value of grey 

relational grade is equal to 1. The grey relational grade also shows the degree of 

influence of the comparability sequence over the reference sequence. If a particular 

comparability sequence is more important than the other sequences to the reference, 

then the grey relational grade for that comparability and reference sequence will be 

higher than other grey relational grades.  
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2.5. 4. Analysis and discussion of Experimental results         

 In the present study, surface roughness and delamination damage for different 

parameters and experimental runs are listed in table 2.typically, lower values of the 

surface roughness and delamination damage as the target values are desirable. 

Therefore, the data sequences have the smaller-the-better characteristic. The values 

of surface roughness and delamination damage are set to be the reference 

sequence. More over the results of 9 experiments were the comparability sequences 

xi*(k), i = 1 – 9, k= 1 – 3.     

Table 3 Response sequences after data pre processing 
Comparability 

sequence 
Surface Roughness 
(Ra) 

Delamination Damage 
Factor (Fd ) 

1 0.9146 0.8630 
2 0.5012 0.0000 
3 0.7359 0.8356 
4 0.5317 0.3972 
5 1.0000 0.5205 
6 0.3758 0.2328 
7 0.8182 0.4657 
8 0.0000 0.9178 
9 0.7295 1.0000 

 Table 3 Lists all of the sequences following data preprocessing using 

equation(2) .Also, the deviation sequences ∆oi , ∆max(k) and  ∆min(k) for i = 1 – 9, k= 1 – 

3 can be calculated as follows. 

∆o1(1)=│xo
*(1)-x1

*(1)│=│1.00-0.9146=0.0854│ 

∆o1(2)=│xo
*(2)-x1

*(2)│=│1.00-0.8630=0.1370│ 

∆max=∆05 (1) = ∆09 (2) =1.0000 

∆min=∆08 (1) = ∆02 (2) =0.0000 

 The distinguishing coefficient ζ can be substituted for the grey relational 

coefficient in equation (5). If all the process parameters have equal weight then ζ is 

0.5.   
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Table 4: Grey relational coefficient and grade 
Runs Grey Relational Coefficients Grey 

Relational 
Grade( Γ) 

(Ra) (Fd ) 

1 0.8541 0.7849 0.8195 
2 0.5006 0.3333 0.4169 
3 0.6543 0.7525 0.7034 
4 0.5163 0.4534 0.4848 
5 1.0000 0.5104 0.7552 
6 0.4447 0.3962 0.4204 
7 0.7333 0.4834 0.6083 
8 0.3333 0.8588 0.5960 

9 0.6489 1.0000 0.8244 

 Table 4 lists the grey relational coefficient and grade for each experiment of 

the L9 orthogonal array by applying equations (5) and (6).  

 According to the performed experiment design it is clearly observed from table 

4 and fig (3) that the end milling process parameter setting of experiment no.9 has 

the highest grey relational grade. Thus the experiment 9 gives the best multi-

performance characteristics among the 9 experiments. The response table of 

Taguchi method was employed here to calculate the average grey relational grade 

for each factor level. The procedure was to group the grey relational grades by factor 

level for each column in the orthogonal array and then to average them.  Grey 

relational grades for factors A & B at level 1 can be calculated as follows. 

Γ (A) 1= [0.8195+0.4169+0.7034] /3 = 0.6466 

Γ (B) 1= [0.8915+0.4848+0.6083] /3= 0.6375  

 Using the same method, calculations were performed for each factor level and 

response table was generated, as shown in table5.   

Table 5:  Average Grey Relational Grade for Factor and Levels of the Experiment 
Factors Spindle speed(A) Feed rate (B) Depth of cut (C) 

Levels 

1 0.6466 0.6375 0.6881 
2 0.5534 0.5893 0.4992 
3 0.6762 0.6494 0.6879 
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Table 6:  ANOVA for Average Grey Relational Grade 

Symbol Cutting 
Parameters 

DOF SS MS F  

A Spindle 
speed 

2 0.0372 0.0186 4.061* significant 

B Feed rate 2 0.0061 0.0130 2.838 Insignificant 

C Depth of cut 2 0.0717 0.0358 7.816* significant 
Error  20 0.0916 0.00458   

Total  26 0.2066    
*significant, F table at 95%confidence level is F0.05, 2, 20 = 3.49, F exp ≥ F table 

 The analysis of variance (ANOVA) of the experimental data was done to 

statistically analyze the multi response characteristics of the parameters under the 

experimental investigation. From Table 6, it is observe that depth of cut has statistical 

and physically more significance (78.16%),  spindle speed has less significance 

(40.61%) and feed rate has moderately less significance (28.38%) obtained in end 

milling of GFRP with standard K10 carbide 4 flute end mill through grey-based 

taguchi method. 

Table 7: Optimal values of individual machining characteristics 
Machining Characteristics Optimal 

combination 
of parameters

Significant 
parameters 
(at 95% 
confidence 
level) 

Predicted 
optimum 
 value 

Experimental
 value 

Surface Roughness (Ra) A3B3C3 A , C 3.755µm 3.824µm 
Delamination Damage 
Factor Fd ) 

A3B3C3 A , C 1.251 mm/mm 1.178mm/mm 

Average Grey Relational 
Grade(GRG) 

A3B3C3 A,  C 0.8297 0.8244 

 

3. CONCLUSIONS 

 The machining characteristics of Glass Fiber Reinforced Polymeric 

composites have been studied. The primary machining characteristics such as 

surface roughness and delamination damage factor were studied for End milling. The 

results obtained from the experiments as follows. 

 From average grey relational grade table, the combination of parameters 

having the values of, 0.5mm, 1500 rpm and 400 mm/min are obtained for 

spindle speed, feed rate and depth of cut respectively for optimizing surface 

roughness and delamination damage. 
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  From average grey relational grade table, depth of cut, spindle speed and 

feed rate are the order of influence of parameters (C1 A3 B3) on surface 

roughness and delamination damage during machining of GFRP. 

 The result of ANOVA for average grey relational grade, spindle speed and 

depth of cut were most significant parameters for influencing surface 

roughness and delamination damage 

 Finally, concluded that for end milling of GFRP composites to minimize 

surface roughness and delamination damage the parameters contributions in 

an order are 78.16% of depth of cut and 40.61 % of spindle speed for 

influencing the observed responses.  
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