MULTI-ITEM A SUPPLY CHAIN PRODUCTION INVENTORY MODEL OF TIME DEPENDENT PRODUCTION RATE AND DEMAND RATE UNDER SPACE CONSTRAINT IN FUZZY ENVIRONMENT

Satya Kumar Das
Govt. General Degree College at Gopiballavpur-II, India
E-mail: satyakrdasmath75@gmail.com

Sahidul Islam
University of Kalyani, India
E-mail: sahidul.math@gmail.com

Submission: 4/14/2019
Revision: 5/2/2019
Accept: 5/20/2019

ABSTRACT

In this paper, we have developed an integrated production inventory model for two echelon supply chain consisting of one vendor and one retailer. Production rate and demand rate of retailer and customer are time dependent. Idle time cost of the vendor has been considered. Multi-item inventory has been considered. In integrated inventory model average cost has been calculated under limitation on storage space. Two echelon supply chain fuzzy inventory model has been solved by various techniques like as Fuzzy programming technique with hyperbolic membership functions (FPTHMF), Fuzzy non-linear programming technique (FNLP) and Fuzzy additive goal programming technique (FAGP), weighted Fuzzy non-linear programming technique (WFNLP) and weighted Fuzzy additive goal programming technique (WFAGP). A numerical example is illustrated to test the model. Finally to make the model more realistic, sensitivity analysis has been shown.

Keywords: Inventory, Supply Chain, Production, Multi-item, Fuzzy Technique
1. INTRODUCTION

A Supply Chain inventory model deal with decision that minimum the total average cost or maximum the total average profit. In that way to construct a real life mathematical inventory model on base on various assumptions and notations and approximations. Supply Chain management has taken a very important and critical role for any company in the increase globalization and competition in the business.

The success of any supply chain system in any business depends on its level of integration. Idle time cost is the very important function or role in the supply chain inventory model. In the real field inventory costs like as raw material holding cost, finished goods holding cost, production cost etc. are not always fixed. Therefore consideration of fuzzy number for all cost parameters is more realistic and practical the model.

In the real life business transaction the demand rate of any product is always varying. Several inventory models have been established by considering time-dependent demand. Silver and Meal (1969) first established the inventory for the case of a varying demand. Dave and Patel (1981) developed inventory models for deteriorating items with time-proportional demand. Sana and Chaudhuri (2004) presented inventory model with time dependent demand for of deteriorating items.

depended unit Production cost under a space constraint: A fuzzy geometric programming approach.

Two echelon supply chain inventory model and it in fuzzy environment is very interesting. To solve supply chain inventory types of problems fuzzy set theory are used. The fuzzy set theory was introduced by Zadeh (1965). Afterward Zimmermann (1985) applied the fuzzy set theory concept with some useful membership functions to solve the linear programming problems with some objective functions. Wang and Shu (2005) established fuzzy decision modeling for supply chain management. Islam and Mandal (2019) have written a book on fuzzy geometric programming techniques and applications. Cárdenas-Barrón and Sana (2014) developed a production inventory model for a two echelon supply chain when demand is dependent on sales teams’ initiatives.

In this article, consider an integrated production inventory model for a two echelon supply chain consisting of one vendor and another retailer. Production rate of the vendor and demand rate of retailer and customer are assumed dependent on time. Idle time cost of the vendor has been considered. Multi-item inventory has been considered under space constraint.

Two echelon supply chain fuzzy inventory model has been formulated due to uncertainty of the cost parameters and solve by various techniques like as Fuzzy programming technique with hyperbolic membership functions (FPTHMF), Fuzzy non-linear programming technique (FNLP) and Fuzzy additive goal programming technique (FAGP), weighted Fuzzy non-linear programming technique (WFNLNP) and weighted Fuzzy additive goal programming technique (WFAGP). Numerical example and sensitivity analysis has been shown to illustrate the proposed two echelon supply chain inventory model.

2. MODEL FORMULATION

2.1. Notations

\(P_{vt}(t) \): Production rate at time \(t \) for the vendor of the \(i^{th} \) item.
$D_{ri}(t)$: Demand rate at time t for retailer of the i^{th} item.

$D_{ci}(t)$: Demand rate per unit time for customer of the i^{th} item.

$I_{vi}(t)$: Vendor inventory level of the i^{th} item at time t, during the production time.

$I'_{vi}(t)$: Vendor inventory level of the i^{th} item at time t, during the non-production time.

$I_{ri}(t)$: Retailer inventory level of the i^{th} item at time t, during the period of the vendor.

$I'_{ri}(t)$: Retailer inventory level of the i^{th} item at time t, during the idle time of the vendor.

t_1: Production period of the vendor ($t_1 > 0$). (Decision variable)

t_2: Period of the vendor ($t_1 < t_2$). (Decision variable)

T: The length of cycle time of the supply chain inventory model ($t_1 < t_2 < T$). (Decision variable)

h_{vi}: Holding cost per unit per unit time for the vendor of the i^{th} item.

h_{ri}: Holding cost per unit per unit time for the retailer of the i^{th} item.

p_{vi}: Inventory production cost per unit item of the i^{th} item.

Q_i: The production quantity for the duration of a cycle of length T for i^{th} item.

A_{vi}: Set-up cost per order of i^{th} item for the vendor.

A_{ri}: Set-up cost per order of i^{th} item for the retailer.

i_v: Cost per unit idle time of the vendor.

W_i: Storage space per unit for the i^{th} item.

W: Total storage space for all items.

TC_{vi}: Total cost for the vendor of the i^{th} item.

TC_{ri}: Total cost for the retailer of the i^{th} item.

$TAG_i(t_1, t_2, T)$: Joint total average cost of the i^{th} item.

h_{vi}: Fuzzy holding cost per unit per unit time for the vendor of the i^{th} item.

h_{ri}: Fuzzy holding cost per unit per unit time for the retailer of the i^{th} item.

p_{vi}: Fuzzy inventory production cost per unit item of the i^{th} item.
\(\tilde{A}_{vi} \): Fuzzy set-up cost per order of \(i^{th} \) item for the vendor.

\(\tilde{A}_{ri} \): Fuzzy set-up cost per order of \(i^{th} \) item for the retailer.

\(\tilde{c}_v \): Fuzzy cost per unit idle time of the vendor.

\(TAC(t_1, t_2, T) \): Joint total fuzzy average cost of the \(i^{th} \) item.

2.2. Assumptions

1. The inventory system is developed for multi-item.

2. The replenishment occurs instantaneously at infinite rate.

3. The lead time is negligible.

4. Shortages are not allowed.

5. The cost of idle times in the supply chain inventory model has been considered.

6. The production rate \(P_{vi}(t) \) at time \(t \) for the vendor of the \(i^{th} \) item is considered as

\[
P_{vi}(t) = a_i e^{b_i t},
\]

where \(a_i \) and \(b_i \) are the positive constant real numbers.

7. The demand rate \(D_{ri}(t) \) at time \(t \) of retailer of the \(i^{th} \) item is considered as

\[
D_{ri}(t) = a_i t^\beta_i, \quad \beta_i \geq 1.
\]

8. The demand rate \(D_{ci}(t) \) at time \(t \) of the customer of the \(i^{th} \) item is considered as

\[
D_{ci}(t) = \gamma_i + \delta_i t, \quad \gamma_i \geq 0, \delta_i \geq 0.
\]

9. Deteriorations are not allowed.

2.3. Model formation in crisp of \(i^{th} \) item

2.3.1. The vendor individual inventory model:

In the proposed model, in this section, we have developed the mathematical inventory model for the manufacturer. Here the production starts from the time \(t = 0 \) with the production rate \(P_{vi}(t) \). Production occurs during the time interval \([0, t_1] \). After production during the time interval \([t_1, t_2] \) the inventory depletes due to only demand of the retailer.

Then governing differential equations of the inventory system at the time \(t \) are given as follows:

\[
\frac{dI_{vi}(t)}{dt} = a_i e^{b_i t} - a_i t^\beta_i, \quad 0 \leq t \leq t_1
\]
\[
\frac{dI'_v(t)}{dt} = -\alpha_i t^{\beta_i-1}, \text{ for } t_1 \leq t \leq t_2 \tag{2}
\]

With boundary condition, \(I_v(0) = 0, I_v(t_2) = 0\). \(\tag{3}\)

And \(I_v(t_1) = I'_v(t_1) \tag{4}\)

Solving the above differential equation (1) and (2) we get

\[
I_v(t) = \frac{a_i}{b_i} \left(e^{b_i t} - 1 \right) - \frac{a_i}{\beta_i} t^{\beta_i}, \text{ for } 0 \leq t \leq t_1 \tag{5}
\]

\[
I'_v(t) = \frac{a_i}{\beta_i} \left(t^{\beta_i} - t^{\beta_i} \right), \text{ for } t_1 \leq t \leq t_2 \tag{6}
\]

Using continuity condition (4) we have

\[
t_2^{\beta_i} = \frac{a_i b_i}{b_i a_i} \left(e^{b_i t_1} - 1 \right) \tag{7}
\]

And \(Q_v = \frac{a_i}{b_i} \left(e^{b_i t_1} - 1 \right) \)

Figure 1: Inventory level of the vendor

Now calculating the various cost as following

i) Set-up-cost per cycle = \(A_{vi}\)

ii) The inventory holding cost per cycle = \(h_v \int_{0}^{t_1} I_v(t) dt + h_v \int_{t_1}^{t_2} I'_v(t) dt\)

\[= h_v \left[\frac{a_i}{b_i} \left(\frac{1}{b_i} (e^{b_i t_1} - 1) - t_1 \right) + \frac{\alpha_i}{\beta_i + 1} t_2^{\beta_i+1} - \frac{\alpha_i}{\beta_i} t_2^{\beta_i} t_1 \right] \]

iii) The inventory production cost = \(p_v \int_{0}^{t_1} a_i e^{b_i t} dt\)

\[= p_v \frac{a_i}{b_i} \left(e^{b_i t_1} - 1 \right) \]

iv) The vendor idle time cost = \(i_v (T - t_2)\)

Therefore the vendor total cost is
\[TC_{vl}(t_1, t_2, T) = < \text{set-up cost} > + < \text{holding cost} > + < \text{production cost} > + < \text{idle time cost} > \]

\[TC_{vl}(t_1, t_2, T) = A_{vl} + h_{vl} \left[\frac{a_i}{b_i} \left(e^{b_i t_1} - 1 \right) - t_1 \right] + \frac{a_i}{b_i+1} t_2^{\beta_i+1} - \frac{a_i}{b_i} t_2^{\beta_i t_1} + \]
\[p_{vl} \frac{a_i}{b_i} (e^{b_i t_1} - 1) + i_v(T - t_2) \]

(8)

2.3.2. The retailer individual inventory model:

The governing differential equations of the inventory system at the time \(t \) are given follows:

\[\frac{dI_{rl}(t)}{dt} = \alpha_i t^{\beta_i-1} - (\gamma_i + \delta_i t), \quad \text{for} \quad 0 \leq t \leq t_2 \]

(9)

\[\frac{dI_{rl}'(t)}{dt} = -(\gamma_i + \delta_i t), \quad \text{for} \quad t_2 \leq t \leq T \]

(10)

With boundary condition, \(I_{rl}(0) = 0, I_{rl}(T) = 0 \).

And \(I_{rl}(t_2) = I_{rl}'(t_2) \)

(12)

Solving the above differential equation (9) and (10), using boundary conditions, we get

\[I_{rl}(t) = \frac{\alpha_i}{\beta_i} t^{\beta_i} - (\gamma_i t + \frac{\delta_i}{2} t^2), \quad \text{for} \quad 0 \leq t \leq t_2 \]

(13)

\[I_{rl}'(t) = \gamma_i (T - t) + \frac{\delta_i}{2} (T^2 - t^2), \quad \text{for} \quad t_2 \leq t \leq T \]

(14)

Using continuity condition (12) we have

\[\frac{\alpha_i}{\beta_i} t_2^{\beta_i} = \gamma_i T + \frac{\delta_i}{2} T^2 \]

(15)

Now calculating the various cost as following
i) Set-up-cost per cycle = A_{ri}

ii) The inventory holding cost per cycle = $h_{ri} \int_{t_1}^{t_2} I_{ri}(t) dt + h_{ri} \int_{t_2}^{T} I'_{ri}(t) dt$

\[= h_{ri} \left[\frac{\alpha_i}{\beta_i(\beta_i + 1)} t_2^{\beta_i+1} + \frac{\gamma_i T}{2} (T - 2t_2) + \frac{\delta_i T^2}{6} (2T - 3t_2) \right] \]

Therefore the vendor total cost is

\[TC_{ri}(t_1, t_2, T) = <\text{set-up-cost}> +<\text{holding cost}> \]

\[TC_{ri}(t_1, t_2, T) = A_{ri} + h_{ri} \left[\frac{\alpha_i}{\beta_i(\beta_i + 1)} t_2^{\beta_i+1} + \frac{\gamma_i T}{2} (T - 2t_2) + \frac{\delta_i T^2}{6} (2T - 3t_2) \right] \tag{16} \]

2.3.3. The integrated inventory model

Therefore the total average cost for i^{th} item in integrated model is

\[TAC_i(t_1, t_2, T) = \frac{1}{T} \left(TC_{vi}(t_1, t_2, T) + TC_{ri}(t_1, t_2, T) \right) \]

\[TAC_i(t_1, t_2, T) = \frac{1}{T} \left[A_{vi} + h_{vi} \left\{ \frac{\alpha_i}{b_i} \left(e^{b_i t_1} - 1 \right) - t_i \right\} + \frac{\alpha_i}{\beta_i+1} t_2^{\beta_i+1} - \frac{\alpha_i}{\beta_i} t_2^{\beta_i} \right] + \\
\frac{p_{vi}}{b_i} \left(e^{b_i t_1} - 1 \right) + i_v(T - t_2) + A_{ri} + h_{ri} \left\{ \frac{\alpha_i}{\beta_i(\beta_i + 1)} t_2^{\beta_i+1} + \frac{\gamma_i T}{2} (T - 2t_2) + \frac{\delta_i T^2}{6} (2T - 3t_2) \right\} \] \tag{17} \]

For $i = 1, 2, 3, \ldots, n$

Therefore, the multi objective inventory model is Minimize

\[TAC_i(t_1, t_2, T) = \frac{1}{T} \left[A_{vi} + h_{vi} \left\{ \frac{\alpha_i}{b_i} \left(e^{b_i t_1} - 1 \right) - t_i \right\} + \frac{\alpha_i}{\beta_i+1} t_2^{\beta_i+1} - \frac{\alpha_i}{\beta_i} t_2^{\beta_i} \right] + \\
\frac{p_{vi}}{b_i} \left(e^{b_i t_1} - 1 \right) + i_v(T - t_2) + A_{ri} + \\
+ h_{ri} \left\{ \frac{\alpha_i}{\beta_i(\beta_i + 1)} t_2^{\beta_i+1} + \frac{\gamma_i T}{2} (T - 2t_2) + \frac{\delta_i T^2}{6} (2T - 3t_2) \right\} \]

Subject to

\[\frac{\alpha_i}{b_i} \left(e^{b_i t_1} - 1 \right) = \gamma_i T + \frac{\delta_i T^2}{2} \]

\[\sum^n_i W_i Q_i \leq W \text{ i.e } \sum^n_i W_i \frac{\alpha_i}{b_i} \left(e^{b_i t_1} - 1 \right) \leq W \tag{18} \]

For $i = 1, 2, 3, \ldots, n$

3. FUZZY MODEL:
Normally the parameters for ordering cost, holding cost, production cost and idle time cost are not particularly known to us. Due to uncertainty, we assume all the parameters

\((A_{vi}, A_{ri}, \alpha_i, \beta_i, a_i, b_i, h_{vi}, h_{ri}, p_{vi}, i_v, \gamma_i, \delta_i)\) as generalized trapezoidal fuzzy number (GTrFN)

\((\tilde{A}_{vi}, \tilde{A}_{ri}, \tilde{\alpha}_i, \tilde{\beta}_i, \tilde{a}_i, \tilde{b}_i, \tilde{h}_{vi}, \tilde{h}_{ri}, \tilde{p}_{vi}, \tilde{i}_v, \tilde{\gamma}_i, \tilde{\delta}_i)\). Let us take,

\[
\tilde{A}_{vi} = (A_{vi}^1, A_{vi}^2, A_{vi}^3, A_{vi}^4; \omega_{A_{vi}}), 0 < \omega_{A_{vi}} \leq 1; \tilde{\alpha}_i = (\alpha_i^1, \alpha_i^2, \alpha_i^3, \alpha_i^4; \omega_{a_i}) , 0 < \omega_{a_i} \leq 1;
\]

\[
\tilde{\beta}_i = (\beta_i^1, \beta_i^2, \beta_i^3, \beta_i^4; \omega_{\beta_i}) , 0 < \omega_{\beta_i} \leq 1; \tilde{\alpha}_i = (\alpha_i^1, \alpha_i^2, \alpha_i^3, \alpha_i^4; \omega_{a_i}) , 0 < \omega_{a_i} \leq 1;
\]

\[
\tilde{h}_{ri} = (h_{ri}^1, h_{ri}^2, h_{ri}^3, h_{ri}^4; \omega_{h_{ri}}), 0 < \omega_{h_{ri}} \leq 1; \tilde{\gamma}_i = (\gamma_i^1, \gamma_i^2, \gamma_i^3, \gamma_i^4; \omega_{\gamma_i}) , 0 < \omega_{\gamma_i} \leq 1;
\]

\[
\tilde{p}_{vi} = (p_{vi}^1, p_{vi}^2, p_{vi}^3, p_{vi}^4; \omega_{p_{vi}}) , 0 < \omega_{p_{vi}} \leq 1; \tilde{\delta}_i = (\delta_i^1, \delta_i^2, \delta_i^3, \delta_i^4; \omega_{\delta_i}) , 0 < \omega_{\delta_i} \leq 1
\]

\[
\tilde{A}_{ri} = (A_{ri}^1, A_{ri}^2, A_{ri}^3, A_{ri}^4; \omega_{A_{ri}}), 0 < \omega_{A_{ri}} \leq 1; \tilde{\gamma}_i = (\gamma_i^1, \gamma_i^2, \gamma_i^3, \gamma_i^4; \omega_{\gamma_i}) , 0 < \omega_{\gamma_i} \leq 1
\]

(for \(i = 1, 2, \ldots, n\)).

Then the above crisp inventory model (18) reduces to the fuzzy model as Minimize

\[
TAC_i(t_1, t_2, T) = \frac{1}{T} \left[\tilde{A}_{vi} + \tilde{h}_{vi} \left\{ \frac{\tilde{\alpha}_i}{\tilde{b}_i} (e^{\tilde{b}_i t_1} - 1) - t_1 \right\} + \frac{\tilde{\alpha}_i}{\tilde{\beta}_i + 1} t_2^{\tilde{\beta}_i + 1} - \frac{\tilde{\alpha}_i}{\tilde{\beta}_i} t_2^{\tilde{\beta}_i} t_1 \right]
\]

\[
+ \tilde{p}_{vi} \frac{\tilde{\alpha}_i}{\tilde{b}_i} (e^{\tilde{b}_i t_1} - 1) + \tilde{\gamma}_i (T - t_2) + \tilde{A}_{ri}
\]

\[
+ \frac{\tilde{h}_{ri}}{\tilde{\beta}_i (\tilde{\beta}_i + 1)} t_2^{\tilde{\beta}_i + 1} + \frac{\tilde{\gamma}_i T}{2} (T - 2t_2) + \frac{\tilde{\delta}_i T^2}{6} (2T - 3t_2) \right]
\]

Subject to

\[
\sum_i W_i \frac{\tilde{\alpha}_i}{\tilde{b}_i} (e^{\tilde{b}_i t_1} - 1) \leq W
\]

\[
(19)
\]

For \(i = 1, 2, 3, \ldots, n\)

In defuzzification of fuzzy number technique, if we consider a GTrFN \(\tilde{A} = (a, b, c, d; \omega)\), then the total \(\lambda\)- integer value of \(\tilde{A} = (a, b, c, d; \omega)\) is \(\lambda^W(\tilde{A}) = \lambda \omega^{c+d} + (1 - \lambda) \omega^{a+b} \frac{1}{2}

Taking \(\lambda = 0.5\), therefore we get approximated value of a GTrFN \(\tilde{A} = (a, b, c, d; \omega)\) is
\[\omega \left(\frac{a+b+c+d}{4} \right) \]. Therefore using approximated value of GTrFN, we have the approximated values \((A_{v}, A_{r}, \alpha_{i}, \beta_{i}, \bar{A}_{v}, \bar{A}_{r}, \bar{\alpha}_{i}, \bar{\beta}_{i}, \bar{A}_{r}, \bar{A}_{v})\) of the GTrFN parameters \((\bar{A}_{v}, \bar{A}_{r}, \alpha_{i}, \beta_{i}, \bar{A}_{v}, \bar{A}_{r}, \bar{\alpha}_{i}, \bar{\beta}_{i}, \bar{A}_{r}, \bar{A}_{v})\). So the above model (19) reduces to multi objective supply chain inventory model (MOSCIM) as Minimize

\[
TAC_i(t_1, t_2, T) = \frac{1}{T} \left[A_{v} + h_{v} \left(\frac{1}{\beta_{i}} \left(e^{\beta_{t_{1}}} - 1 \right) - t_1 \right) + \frac{\alpha_{i}}{\beta_{i} + 1} \beta_{i}^{t_{2} - t_{1}} - \frac{\alpha_{i}}{\beta_{i}} \beta_{i}^{t_{2} - t_{1}} \right] \\
+ \frac{\bar{A}_{v}}{\bar{A}_{r}} \left(e^{\bar{\beta}_{t_{1}}} - 1 \right) + \bar{h}_{v} (T - t_2) + \bar{A}_{r} \\
+ \frac{\bar{\alpha}_{i}}{\bar{\beta}_{i}} \left(\bar{\beta}_{i} + 1 \right) \beta_{i}^{t_{2} - t_{1}} + \bar{\alpha}_{i} \beta_{i}^{t_{2} - t_{1}} \left(T - 2t_2 + \frac{T^2}{2} (2T - 3t_2) \right)
\]

Subject to

\[
\sum_{i=1}^{n} W_i \frac{\alpha_{i}}{\beta_{i}} \left(e^{\beta_{t_{1}}} - 1 \right) = \frac{\delta_{t}}{2} T^2 \\
\sum_{i=1}^{n} W_i \frac{\alpha_{i}}{\beta_{i}} \left(e^{\beta_{t_{1}}} - 1 \right) \leq W
\]

For \(i = 1, 2, 3, \ldots, n\) we get \(n\) objectives.

4. FUZZY PROGRAMMING TECHNIQUE (MULTI-OBJECTIVE ON MAX-MIN AND ADDITIVE OPERATORS)

Solve the MOSCIM (20) as a single objective NLP using only one objective at a time and we ignoring the all others. Repeat the process \(n\) times for \(n\) different objective functions. So we get the ideal solutions. From the above results, we find out the corresponding values of every objective function at each solution obtained. With these values the pay-off matrix can be prepared as follows:

\[
\begin{bmatrix}
TAC_1(t_1, t_2, T) & TAC_2(t_1, t_2, T) & \cdots & TAC_n(t_1, t_2, T) \\
(t_1^1, t_2^1, T^1) & TAC_1(t_1^1, t_2^1, T^1) & TAC_2(t_1^1, t_2^1, T^1) & \cdots & TAC_n(t_1^1, t_2^1, T^1) \\
(t_1^2, t_2^2, T^2) & TAC_1(t_1^2, t_2^2, T^2) & TAC_2(t_1^2, t_2^2, T^2) & \cdots & TAC_n(t_1^2, t_2^2, T^2) \\
& \cdots & \cdots & \cdots & \cdots \\
(t_1^n, t_2^n, T^n) & TAC_1(t_1^n, t_2^n, T^n) & TAC_2(t_1^n, t_2^n, T^n) & \cdots & TAC_n(t_1^n, t_2^n, T^n)
\end{bmatrix}
\]
Let $U^k = \max\{TAC_k(t_1^i, t_2^i, T^i)\}, i = 1,2, \ldots, n$ for $k = 1,2, \ldots, n$ and

$$L^k = \min\{TAC_k(t_1^i, t_2^i, T^i)\}, i = 1,2, \ldots, n\} for k = 1,2, \ldots, n.$$ (22)

Hence U^k, L^k are identified, $L^k \leq TAC_k(t_1, t_2, T) \leq U^k$, for $k = 1,2, \ldots, n$. (23)

For solving MOSCIM (20), in this technique firstly we have to make pay-off matrix which has been shown in the above (21). Then we have to find U^i and L^i, shown in equation no. (22), (23) and (24). In this technique the fuzzy membership function $\mu_{TAC_i}(TAC_i(t_1, t_2, T))$ for the i^{th} objective function $TAC_i(t_1, t_2, T)$ for $i = 1,2, \ldots, n$ are defined as follows:

$$\mu_{TAC_i}(TAC_i(t_1, t_2, T)) = \begin{cases}
1 & \text{for } TAC_i(t_1, t_2, T) < L^i \\
\frac{U^i - TAC_i(t_1, t_2, T)}{U^i - L^i} & \text{for } L^i \leq TAC_i(t_1, t_2, T) \leq U^i \\
0 & \text{for } TAC_i(t_1, t_2, T) > U^i
\end{cases}$$

for $i = 1,2, \ldots, n$. (25)

4.1. Fuzzy non-linear programming technique (FNLP) based on max-min operator

Using the above membership function (25), fuzzy non-linear programming problems are formulated as follows:

Max α'

Subject to

$$TAC_i(t_1, t_2, T) + \alpha'(U^i - L^i) \leq U^i, \quad for i = 1,2, \ldots, n.$$ (26)

$0 \leq \alpha' \leq 1$,

Therefore

$$\frac{1}{T} \left[A_{vt} + h_{vt} \left(\begin{array}{c} \frac{\alpha_i}{\beta_i} (e^{\delta_t t_1} - 1) - t_1 \\
\frac{1}{\beta_i} (t_2^{i+1} - \frac{\alpha_i}{\beta_i} t_2 t_1) \\
+ \frac{\alpha_i}{\beta_i} (e^{\delta_t t_1} - 1) + t_2 (T - t_2) \\
\end{array} \right) \right] + \frac{\gamma_i T}{2} (T - 2t_2) + \frac{\delta_i T^2}{6} (2T - 3t_2) + \alpha' (U^i - L^i) \leq U^i$$

$0 \leq \alpha' \leq 1$,

$$\frac{\alpha_i}{\beta_i} (e^{\delta_t t_1} - 1) = \gamma_i T + \frac{\delta_i}{2} T^2$$
\[
\sum_{i=1}^{n} W_i \frac{a_i}{b_i} (e^{\beta_i t_1} - 1) \leq W \text{ for } i = 1, 2, ..., n. \tag{27}
\]

The non-linear programming problems (27) can be solved by suitable mathematical programming algorithm and we get the solution of MOSCIM (20).

4.2. Fuzzy additive goal programming technique (FAGP) based on additive operator

In this process, using membership function (25), fuzzy non-linear programming problem is formulated as follows:

\[
\begin{align*}
\text{Max} & \quad \sum_{i=1}^{n} \frac{U_i - T \alpha(T_i)}{\mu_i} (e^{\beta_i t_1} - 1) + \frac{\beta_i}{\beta_i + 1} t_2 - \frac{\alpha_i}{\beta_i} t^{1+1} + \beta_i (e^{\beta_i t_1} - 1) + \\
\text{Subject to} & \quad L_i \leq \frac{1}{\tau} \left[A_i + h_i \left(\frac{\alpha_i}{\beta_i} (e^{\beta_i t_1} - 1) - t_1 \right) + \frac{\beta_i}{\beta_i + 1} t_2 - \frac{\alpha_i}{\beta_i} t^{1+1} \right] + \frac{\beta_i}{\beta_i + 1} t_2 (T - 2t_2) + \frac{\delta_i}{6} (2T - 3t_2) \leq U_i \\
& \sum_{i=1}^{n} W_i \frac{a_i}{b_i} (e^{\beta_i t_1} - 1) \leq W \text{ for } i = 1, 2, ..., n \tag{29}
\end{align*}
\]

The non-linear programming problem (29) can be solved by suitable mathematical programming algorithm and we get the solution of MOSCIM (20).

5. FUZZY PROGRAMMING TECHNIQUE (BASED ON WEIGHTED MINIMUM AND ADDITIVE OPERATORS) TO SOLVE MOSCIM (20)

5.1. Fuzzy non-linear programming technique (FNLP) based on weighted max-min operator (WFNLP)

For this process we take positive weights \(\omega_i\) for each objective \(TAC_i(t_1, t_2, T)\) for \(i = 1, 2, ..., n\) respectively.

Where \(\sum_{i=1}^{n} \omega_i = 1\).

Using the above membership functions (25), weighted FNLP are stated as follows:

\[
\begin{align*}
\text{Max} & \quad \alpha'' \\
\text{Subject to} & \quad \omega_i \mu_{TAC_i}(TAC_i(t_1, t_2, T)) \geq \alpha'', \text{ for } i = 1, 2, ..., n \\
0 & \leq \alpha'' \leq 1,
\end{align*}
\]
Therefore

\[\text{Max } \alpha'' \]

\[
\omega_i \frac{1}{T} \left[\bar{A}_v + \bar{R}_v \left\{ \frac{\bar{a}_i}{\bar{b}_i} \left(\frac{1}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) - t_1 \right) + \frac{\bar{a}_i}{\bar{b}_i + 1} t_{\bar{b}_i + 1} - \frac{\bar{a}_i}{\bar{b}_i} t_{\bar{b}_i} t_1 \right\} + \bar{p}_v \frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1)
\]

\[+ \bar{h}_v (T - t_2) + \bar{A}_r \]

\[
+ \bar{h}_r \left\{ \frac{\bar{a}_i}{\bar{b}_i (\bar{b}_i + 1)} t_{\bar{b}_i + 1} + \frac{\bar{p}_r T}{2} (T - 2t_2) + \frac{\bar{\delta}_r t_2^2}{6} (2T - 3t_2) \right\} \geq \alpha''
\]

\[0 \leq \alpha'' \leq 1, \]

And \(\sum_{i=1}^{n} \omega_i = 1 \)

\[
\frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) = \bar{r}_i T + \frac{\delta_i T^2}{2}
\]

\[
\sum_{i=1}^{n} W_i \frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) \leq W \text{ for } i = 1,2,\ldots,n
\]

(30)

The non-linear programming problem (30) can be solved by favorable mathematical programming algorithm and we get the solution of MOSCIM (20).

5.2. 5.2 Fuzzy additive goal programming technique (FAGP) based on weighted additive operator (WFAGP)

Again using the above membership function (25), weighted FAGP are formulated as follows:

\[\text{Max } \sum_{i=1}^{n} \omega_i \mu_{TAC_i} (TAC_i(t_1, t_2, T)) \]

Subject to,

\[0 \leq \mu_{TAC_i} (TAC_i(t_1, t_2, T)) \leq 1, \text{ for } i = 1,2,\ldots,n. \]

\[\sum_{i=1}^{n} \omega_i = 1 \]

Therefore
The non-linear programming problem (32) can be solved by favorable mathematical programming algorithm and we get the solution of MOSCIM (20).

6. FUZZY PROGRAMMING TECHNIQUE WITH HYPERBOLIC MEMBERSHIP FUNCTIONS (FPTHMF) FOR SOLVING MOSCIM (20)

In this technique the fuzzy non-linear hyperbolic membership functions \(\mu_{TAC_i}^H(TAC_i(t_1, t_2, T)) \) for the \(i \)th objective functions \(TAC_i(t_1, t_2, T) \) respectively for \(i = 1, 2, \ldots, n \) are defined as follows:

\[
\mu_{TAC_i}^H(TAC_i(t_1, t_2, T)) = \frac{1}{2} \tanh \left(\left(\frac{U^i + L^i}{2} - TAC_i(t_1, t_2, T) \right) \rho_i \right) + \frac{1}{2}
\]

(33)

Where \(\rho_i \) is a parameter, \(\rho_i = \frac{3}{(U^i - L^i)^2} = \frac{6}{U^i - L^i} \)
Using the above membership function, fuzzy non-linear programming problem is formulated as follows:

Max \(\lambda \)

Subject to \(\frac{1}{2} t \tanh \left(\frac{u^i_t + l^i_t}{2} - T A_i(t_1, t_2, T) \right) \rho_i + \frac{1}{2} \geq \lambda, \lambda \geq 0 \) \hspace{1cm} (34)

And \(\frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) = \bar{y}_i T + \frac{\bar{c}_i}{2} T^2 \)

\[
\sum_{i=1}^{n} W_i \frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) \leq W \text{ for } i = 1, 2, \ldots, n
\]

Now simplifying the above non-linear programming problem (34) and we get

Max \(y \)

Subject to \(y + \rho_i T A_i(t_1, t_2, T) \leq \frac{u^i_t + l^i_t}{2} \rho_i, \ y \geq 0 \) \hspace{1cm} (35)

\[
y + \frac{\rho_i}{T} \left[\bar{A}_{vi} + \bar{h}_{vi} \left(\frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) - t_1 \right) + \frac{\bar{a}_i}{\bar{b}_i} t_2^{\bar{b}_i + 1} - \frac{\bar{a}_i}{\bar{b}_i} t_2^{\bar{b}_i} t_1 \right] + \bar{h}_{rt} \left(\frac{\bar{a}_i}{\bar{b}_i} t_2^{\bar{b}_i + 1} + \frac{\bar{c}_i}{2} (T - 2 t_2) + \frac{\bar{d}_i}{6} (2 T - 3 t_2) \right) \leq \frac{u^i_t + l^i_t}{2} \rho_i, \ y \geq 0,
\]

\[
\frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) = \bar{y}_i T + \frac{\bar{c}_i}{2} T^2
\]

\[
\sum_{i=1}^{n} W_i \frac{\bar{a}_i}{\bar{b}_i} (e^{\bar{b}_i t_1} - 1) \leq W \text{ for } i = 1, 2, \ldots, n
\]

The programming problem (35) can be solved by suitable mathematical programming algorithm and we get the solution of the MOSCIM (20).

7. NUMERICAL EXAMPLE

We have been considered an inventory model of two items with following parameter values in proper units and total storage area is \(W = 1000 m^2 \) and \(W_1 = 3 m^2, W_2 = 2 m^2 \).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{A}_{vi})</td>
<td>(400,500,550,600; 0.9)</td>
<td>(500,550,600,650; 0.7)</td>
</tr>
<tr>
<td>(\bar{A}_{rt})</td>
<td>(600,650,700,750; 0.8)</td>
<td>(700,750,800,850; 0.9)</td>
</tr>
</tbody>
</table>

[https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode]
Licensed under a Creative Commons Attribution 4.0 United States License
In sensitivity analysis MOSCIM (20) has been solved by using only FPTHMF method. From the above table 2, 3 and 4 shows that total average cost of both items is more or less same.

8. SENSITIVITY ANALYSIS

In sensitivity analysis MOSCIM (20) has been solved by using only FPTHMF method.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>% of the parameter</th>
<th>t_1^*</th>
<th>t_2^*</th>
<th>T^*</th>
<th>TAC_1^*</th>
<th>TAC_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1, a_2</td>
<td>-50%</td>
<td>0.63</td>
<td>1.17</td>
<td>2.43</td>
<td>586.33</td>
<td>580.43</td>
</tr>
<tr>
<td></td>
<td>-25%</td>
<td>0.45</td>
<td>1.15</td>
<td>2.45</td>
<td>585.01</td>
<td>570.96</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.29</td>
<td>1.13</td>
<td>2.42</td>
<td>584.83</td>
<td>560.02</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.25</td>
<td>1.13</td>
<td>2.48</td>
<td>581.46</td>
<td>557.03</td>
</tr>
<tr>
<td>b_1, b_2</td>
<td>-50%</td>
<td>0.37</td>
<td>1.14</td>
<td>2.40</td>
<td>588.09</td>
<td>567.18</td>
</tr>
<tr>
<td></td>
<td>-25%</td>
<td>0.36</td>
<td>1.14</td>
<td>2.41</td>
<td>586.92</td>
<td>565.79</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.34</td>
<td>1.14</td>
<td>2.42</td>
<td>584.74</td>
<td>563.36</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.33</td>
<td>1.13</td>
<td>2.42</td>
<td>584.49</td>
<td>562.29</td>
</tr>
<tr>
<td>α_1, α_2</td>
<td>-50%</td>
<td>0.35</td>
<td>1.21</td>
<td>2.42</td>
<td>566.91</td>
<td>537.84</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>-25%</td>
<td>0.35</td>
<td>1.17</td>
<td>2.42</td>
<td>577.81</td>
<td>553.67</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.35</td>
<td>1.11</td>
<td>2.41</td>
<td>591.91</td>
<td>572.73</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.35</td>
<td>1.09</td>
<td>2.41</td>
<td>597.68</td>
<td>579.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β_1, β_2</th>
<th>-50%</th>
<th>0.36</th>
<th>1.26</th>
<th>2.54</th>
<th>566.85</th>
<th>557.99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-25%</td>
<td>0.35</td>
<td>1.18</td>
<td>2.46</td>
<td>577.22</td>
<td>561.56</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.35</td>
<td>1.11</td>
<td>2.39</td>
<td>591.89</td>
<td>566.62</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.34</td>
<td>1.09</td>
<td>2.37</td>
<td>591.94</td>
<td>568.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ_1, γ_2</th>
<th>-50%</th>
<th>0.25</th>
<th>1.09</th>
<th>3.30</th>
<th>458.40</th>
<th>483.74</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-25%</td>
<td>0.31</td>
<td>1.12</td>
<td>2.76</td>
<td>532.41</td>
<td>534.57</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.39</td>
<td>1.15</td>
<td>2.17</td>
<td>631.64</td>
<td>580.53</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.42</td>
<td>1.17</td>
<td>1.99</td>
<td>664.10</td>
<td>586.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ_1, δ_2</th>
<th>-50%</th>
<th>0.35</th>
<th>1.14</th>
<th>2.43</th>
<th>583.67</th>
<th>562.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-25%</td>
<td>0.35</td>
<td>1.18</td>
<td>2.42</td>
<td>585.06</td>
<td>563.52</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.35</td>
<td>1.18</td>
<td>2.41</td>
<td>586.88</td>
<td>565.52</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.35</td>
<td>1.18</td>
<td>2.40</td>
<td>588.27</td>
<td>566.50</td>
</tr>
</tbody>
</table>

Figure 3: minimum cost of both item for different values of α_1, α_2

From the above figure 5 shows that minimum cost of the both items are decreased when values of α is increased. And figure 6 suggested that the same of α for b.

Figure 4: minimum cost of both item for different values of β_1, β_2

Figure 5: minimum cost of both items for different values of α_1, α_2

Figure 6: minimum cost of both items for different values of β_1, β_2
Figure 7: minimum cost of both items for different values of γ_1, γ_2

Figure 8: minimum cost of both items for different values of δ_1, δ_2

From the above figure 5, 6, 7, 8 suggests that minimum cost of the both items are increased when values of $\alpha, \beta, \gamma, \delta$ is increased.

9. CONCLUSION:

In this article, we developed an integrated production inventory model for a two echelon supply chain consisting of one vendor and another one retailer. Production rate and demand rate of retailer and customer are considered time dependent. Idle time cost of the vendor has been considered. Multi-item inventory has been considered under limitation on storage space. Due to uncertainty, the cost parameters are taken trapezoidal fuzzy number and the crisp model converted into fuzzy model.

Two echelon supply chain fuzzy inventory model has been solved by various techniques like as Fuzzy programming technique with hyperbolic membership functions (FPTHMF), Fuzzy non-linear programming technique (FNLP) and Fuzzy additive goal programming technique (FAGP), weighted Fuzzy non-linear programming technique (WFNLP) and weighted Fuzzy additive goal programming technique (WFAGP) and found approximately same results. A numerical example has been provided to test the model.

In the future study, it is hoped to further incorporate the proposed model into more realistic assumption, such as probabilistic demand, introduce shortages, generalize the model under two-level credit period strategy etc. Also other type of membership functions like as triangular fuzzy number, Parabolic flat Fuzzy Number ($PfFN$), Parabolic Fuzzy Number (pFN) etc. can be used to form the fuzzy model.

10. ACKNOWLEDGEMENTS:
The authors are thankful to University of Kalyani for providing financial assistance through DST-URSE Programme. The authors are grateful to the reviewers for their comments and suggestions.

REFERENCES:

CARDENAS-BARRON, L. E; SANA, S. S. (2014) A Production Inventory Model for a two echelon Supply Chain when demand is dependent on sales teams’ initiatives. Int. J. Production Economics, http://dx.doi.org/10.1016/j.ijpe.2014.03.007

